レーザー技術で超高温セラミックス製造を革新(Laser Technique Revolutionizes Ultra-High Temperature Ceramic Manufacturing for Space, Defense Applications)

ad

2025-05-29 ノースカロライナ州立大学(NC State)

ノースカロライナ州立大学の研究チームは、超高温耐性材料である炭化ハフニウム(HfC)を、従来より低温・短時間で製造可能なレーザー焼結技術を開発しました。120ワットのレーザーで液体ポリマー前駆体をセラミックス化し、従来の高温炉による焼結に比べて時間とエネルギーを大幅に削減。C/C基材へのコーティングや3Dプリンティングによる複雑構造の形成にも対応し、航空宇宙や防衛、原子力分野での応用が期待されます。

<関連情報>

液体ポリマー前駆体からの一段階選択的レーザー反応熱分解による炭化ハフニウム(HfC)の合成 Synthesis of hafnium carbide (HfC) via one-step selective laser reaction pyrolysis from liquid polymer precursor

Shalini Rajpoot, Kaushik Nonavinakere Vinod, Tiegang Fang, Chengying Xu
Journal of the American Ceramic Society  Published: 14 May 2025
DOI:https://doi.org/10.1111/jace.20650

レーザー技術で超高温セラミックス製造を革新(Laser Technique Revolutionizes Ultra-High Temperature Ceramic Manufacturing for Space, Defense Applications)

Abstract

This study introduces a novel one-step selective laser reaction pyrolysis (SLRP) method for synthesizing hafnium carbide (HfC), an ultrahigh-temperature ceramic (UHTC). Unlike conventional methods that involve multiple steps, including crosslinking and pyrolysis, this approach combines both processes into a single laser-driven step, reducing time and energy consumption. The CO2 infrared (IR) laser (λ = 10.6 µm) used in this technique enables localized heating up to 2000°C within seconds, facilitating the conversion of a liquid polymer precursor into HfC. Material characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) confirmed the crystallinity and phase purity of the synthesized HfC powder. To study energy absorption, thermal and photo-activators were added to the precursor before laser exposure. The thermal activator had a negligible impact on reflectivity but yielded a pure HfC phase, demonstrating the potential for optimized precursor formulations to enhance efficiency without compromising purity. The one-step process was successfully applied for additive manufacturing, depositing HfC coatings onto carbon–carbon (C/C) composite substrates. This technique eliminates the need for high-temperature furnaces, enabling rapid fabrication of UHTC components and advancing scalable, energy-efficient manufacturing. The study highlights its potential for energy, aerospace, and other extreme environment applications.

0501セラミックス及び無機化学製品
ad
ad
Follow
ad
タイトルとURLをコピーしました