競争的相互作用が創り出すカイラル構造を内包した新しいゲル形成メカニズム

ad

2025-05-26 東京大学

東京大学先端科学技術研究センターの研究チームは、荷電コロイド系における新たなゲル形成メカニズムを発見しました。短距離引力と長距離斥力という競合する相互作用が、クラスター内で階層的な秩序形成を引き起こし、無秩序なクラスターからネットワーク、さらにカイラルな剛直クラスターへと遷移する「リエントラント現象」を確認。この構造変化は、異なるスケールの相互作用が「時間遅延型のフラストレーション」を生み出し、最終的なネットワークの持続性が「剛直構造のパーコレーション」によって支配されることを示しています。この成果は、ナノ粒子集合体や生体ゲルの自己組織化の理解を深め、適応型材料の設計や細胞構造の解明に貢献することが期待されます。

競争的相互作用が創り出すカイラル構造を内包した新しいゲル形成メカニズム
荷電コロイドの相分離の様子

<関連情報>

非平衡コロイドゲル化における競合相互作用の影響を解明する Unraveling the Impact of Competing Interactions on Nonequilibrium Colloidal Gelation

Joeri Opdam,Michio Tateno,and Hajime Tanaka
ACS Nano  Published: May 25, 2025
DOI:https://doi.org/10.1021/acsnano.5c03244

Abstract

Competing interactions stabilize exotic mesoscopic structures, yet the microscopic mechanisms by which they influence nonequilibrium processes leading to disordered states remain largely unexplored, despite their critical role in self-assembly across a range of nanomaterials and biological systems. Here, we numerically investigate the structural evolution in charged colloidal model systems, where short-range attractions and long-range repulsions compete. We reveal that these two interaction scales drive sequential ordering within clusters, from tetrahedra motifs to linear aggregates with chiral order. This process disrupts early stage percolated networks, resulting in reentrant behavior─a dynamic transition from disordered clusters to network to chiral rigid clusters. On the other hand, the cluster-elastic network boundary in the final state is governed by isostatic percolation, which slows structural rearrangements, preserves branching points, and sustains a long-lived network. The resulting structure consists of rigid Bernal spiral-like branches connected through flexible branching points lacking order. These insights advance our microscopic understanding of out-of-equilibrium ordering driven by competing interactions, especially phenomena such as temporally delayed frustration reflecting different length scales of competing interactions. The mechanisms identified here may play a crucial role in mesoscale self-organization across soft materials, from nanoparticle assemblies to biological gels and cytoskeletal networks. Understanding how competing interactions regulate structure and dynamics could guide the design of adaptive materials with tunable mechanical properties and offer valuable insights into biological processes such as cytoplasmic organization and cellular scaffolding.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました