触覚センサーの内部構造に迫る(Robotic touch sensors are not just skin deep)

ad

2025-05-02 ノースウェスタン大学

ノースウェスタン大学とテルアビブ大学の研究チームは、ロボットの触覚センサーの性能を妨げる要因として、シリコンゴム複合材料の表面に形成される微細な絶縁層の存在を特定しました。この絶縁層がセンサーと電極間の電気的接触を阻害し、測定の再現性や精度を低下させていたことが判明しました。研究チームは、この絶縁層を研磨で除去することで、センサーの信号精度を大幅に向上させる手法を開発しました。この成果は、安価な導電性エラストマーを用いたロボットスキンの実用化を促進し、ロボットが人間のように物体の形状や質感を正確に把握できる触覚機能の実現に貢献すると期待されています。また、論文では、センサー性能を正確に評価するための電気接触の検証手順も提示されており、再現性の高い研究を可能にする指針となっています。

<関連情報>

センサーの裏をかく: 導電性複合エラストマーの電気接触特性評価の重要性 Getting Under the Sensor’s Skin: The Importance of Electrical Contact Characterization for Conductive Composite Elastomers

Claire C. Onsager, Lev Rovinsky, Can C. Aygen, Shira K. Cohen, Noa Lachman, Matthew A. Grayson
Advanced Electronic Materials  Published: 09 February 2025
DOI:https://doi.org/10.1002/aelm.202400848

触覚センサーの内部構造に迫る(Robotic touch sensors are not just skin deep)

Figure 3 SEM images of insulating surface interface (red frames) versus conducting bulk (green frames) for a) 3.5, b) 4.5, and c) 6 wt.% MWCNT. Enlarged images (bottom row) reveal MWCNT-poor surface layers of microscopic thickness dm around 200–400 nm, seemingly independent of MWCNT percentage. However, visible presence of nanotubes does not necessarily imply presence of conduction, if MWCNT concentration lies below the percolation threshold.

Abstract

Conductive elastomer composites can be used as flexible, lightweight, and inexpensive sensors, but they require ohmic electrical contacts to ensure readout consistency, and such contacts can suffer from hysteresis, non-ohmic behavior, and cyclic fatigue. This work investigates a common cause of non-ohmic conduction in such composite contacts, namely the thin insulating layer native to the surface of most silicone rubber composites that have been infused with multi-walled carbon nanotubes for piezoresistive sensing. Voltage sweep dc measurements of individual contacts on this surface layer behave as parallel head-to-tail diodes with asymmetric hysteresis. Frequency sweep ac measurements quantify the insulator thickness with a leaky capacitor model to be ∼1 µm, independent of nanotube concentration, much thicker than the apparent layer thickness as imaged with scanning electron microscopy. This analysis also confirms highly anisotropic bulk conduction, circa 100 times higher in-plane than cross-plane. To remove the surface layer, a simple surface abrasion is shown to achieve deep ohmic electrical contact to the elastomer bulk. A three-terminal method for verifying ohmic contacts is demonstrated and works even when all contacts are non-ohmic. This three-terminal method be easily applied to other conductive polymers for contact quality-testing.

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました