化学反応の「戻れないポイント」を予測する新モデル(New model predicts chemical reactions’ no-return point)

ad

2025-04-23 マサチューセッツ工科大学 (MIT)

MITの研究チームは、化学反応の「遷移状態(point of no return)」を高精度かつ1秒未満で予測できる機械学習モデルを開発しました。従来、遷移状態の予測には量子化学計算が必要で、計算コストが高く時間がかかっていました。新モデルは、反応物と生成物の構造から遷移状態の構造を迅速に予測し、触媒設計や医薬品・燃料の合成プロセスの効率化に貢献すると期待されています。この成果は『Nature Machine Intelligence』誌に掲載されました。

<関連情報>

化学反応における遷移状態生成のための最適輸送法 Optimal transport for generating transition states in chemical reactions

Chenru Duan,Guan-Horng Liu,Yuanqi Du,Tianrong Chen,Qiyuan Zhao,Haojun Jia,Carla P. Gomes,Evangelos A. Theodorou & Heather J. Kulik
Nature Machine Intelligence  Published:23 April 2025

化学反応の「戻れないポイント」を予測する新モデル(New model predicts chemical reactions’ no-return point)

Abstract

Transition states (TSs) are transient structures that are key to understanding reaction mechanisms and designing catalysts but challenging to capture in experiments. Many optimization algorithms have been developed to search for TSs computationally. Yet, the cost of these algorithms driven by quantum chemistry methods (usually density functional theory) is still high, posing challenges for their applications in building large reaction networks for reaction exploration. Here we developed React-OT, an optimal transport approach for generating unique TS structures from reactants and products. React-OT generates highly accurate TS structures with a median structural root mean square deviation of 0.053 Å and median barrier height error of 1.06 kcal mol−1 requiring only 0.4 s per reaction. The root mean square deviation and barrier height error are further improved by roughly 25% through pretraining React-OT on a large reaction dataset obtained with a lower level of theory, GFN2-xTB. We envision that the remarkable accuracy and rapid inference of React-OT will be highly useful when integrated with the current high-throughput TS search workflow. This integration will facilitate the exploration of chemical reactions with unknown mechanisms.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました