コールド製造アプローチで次世代バッテリーを実現(’Cold’ manufacturing approach to make next-gen batteries)

ad

2025-04-24 ペンシルベニア州立大学(PennState)

System used in the researchers work

ペンシルベニア州立大学の研究チームは、高温処理を用いずに次世代固体電池を製造する「コールドシンタリング(低温焼結)」技術を開発しました。圧力とわずかな液体溶媒を利用して、セラミックとポリマーの複合電解質(LATP-PILG)を低温で高密度化し、イオン伝導性と安定性を向上。従来の製造法で起こる熱による材料劣化を回避できる点が特徴です。この技術は、安全で高性能なバッテリーの実用化を加速させると期待されています。

<関連情報>

ポリマー・イン・セラミックス固体電解質の低温焼結制御界面および集積化のプロービング Probing cold sintering-regulated interfaces and integration of polymer-in-ceramic solid-state electrolytes

Bo Nie, Ta-Wei Wang, Seok Woo Lee, Juchen Zhang, Hongtao Sun
Materialstoday Energy  Available online: 4 February 2025
DOI:https://doi.org/10.1016/j.mtener.2025.101829

Graphical abstract

Highlights

  • The cold sintering process (CSP) is used to densify the polymer-in-ceramic solid-state electrolytes.
  • Optimize the solid-state electrolyte by regulating the process-structure-property correlation.
  • In situ electrochemical impedance spectroscopy (EIS) to reveal densification and interface properties.
  • The polymer-in-ceramic solid electrolyte exhibited high conductivity of 0.42 mS cm−1 at room temperature.

Abstract

Solid-state batteries (SSBs) are considered the next-generation energy storage technology, offering safer and more stable alternative to conventional Li-ion batteries with flammable liquid electrolytes. Among various solid-state electrolytes (SSEs), the NASICON-phase Li1.3Al0.3Ti1.7(PO4)3 (LATP) stands out as a promising candidate due to its high ionic conductivity at room temperature and excellent stability in air. However, densifying oxide-based LATP SSEs typically requires high-temperature sintering, while ion depletion across grain boundaries significantly limits the practical performance of SSBs. To overcome these challenges, we introduce a transient liquid-assisted cold sintering process (CSP) to seamlessly integrate dissimilar ionic conducting materials into polymer-in-ceramic (PIC) composite SSEs under pressure and mild heating. This process enables the uniform distribution of a highly conductive poly(ionic liquid) gel (PILG) phase at the boundaries of LATP particles, effectively reducing interfacial resistance. In-situ electrochemical impedance spectroscopy (EIS) was employed to monitor real-time impedance changes during densification process, providing insights into dynamic interface behaviors. The LATP-PILG composite SSE achieved high ionic conductivities of 4.2 × 10−4 S cm−1 and 5.15 × 10−4 S cm−1 in a coin cell and a split cell under 20 MPa at room temperature, respectively. Furthermore, it demonstrated reversible plating/stripping for hundreds of hours. The integrated LiFePO4-PILG||LATP-PILG|PILG||Li cell exhibited excellent cycling stability.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました