放射線による水分子の化学変化から最新がん治療に迫る! ~放射線で分解する水分子の挙動を視覚的に追跡する計算プログラムの開発に成功~

ad

2025-04-24 日本原子力研究開発機構,北海道大学,北海道科学大学,量子科学技術研究開発機構,海上・港湾・航空技術研究所 海上技術安全研究所

日本原子力研究開発機構(JAEA)は、北海道大学、北海道科学大学、量子科学技術研究開発機構、海上技術安全研究所と共同で、放射線が生体内の水分子を分解して生成するラジカル(OHラジカル、水和電子など)の挙動を視覚的に追跡できる計算プログラム「PHITS-Chem」を開発しました。このプログラムは、放射線治療におけるDNA損傷のメカニズム解明や、近年注目されている「FLASH療法」の最適化に貢献することが期待されています。「PHITS-Chem」は、放射線挙動解析コード「PHITS」と連携し、さまざまな放射線種(電子線、陽子線、炭素線など)による水の放射線分解と生成物の挙動を3次元で可視化します。開発されたコードは2025年4月に一般公開され、世界中の研究者が利用可能となっています。

<関連情報>

放射線分解を効率的かつ視覚的にシミュレートするPHITSコードに基づくイオン線に適用可能な化学コードの開発 Development of a chemical code applicable to ions based on the PHITS code for efficient and visual radiolysis simulations

Yusuke Matsuya, Yuji Yoshii, Tamon Kusumoto, Tatsuhiko Ogawa, Seiki Ohnishi, Yuho Hirata, Tatsuhiko Sato and  Takeshi Kai
Physical Chemistry Chemical Physics  Published21 Mar 2025
DOI:https://doi.org/10.1039/D4CP04216F

Graphical abstract: Development of a chemical code applicable to ions based on the PHITS code for efficient and visual radiolysis simulations

Abstract

Water radiolysis plays an important role in elucidating radiation-induced biological effects such as early DNA damage induction, chromosome aberrations, and carcinogenesis. Several Monte Carlo simulation codes for water radiolysis, commonly referred to as chemical simulation codes, have been developed worldwide. However, these codes typically require substantial computational time to calculate the time-dependent G values of water radiolysis species (e.g., ˙OH, eaq, H2, and H2O2), and their application is often limited to specific ion beam types. In the Particle and Heavy Ion Transport code System (PHITS), the track-structure mode that allows the simulation of each atomic interaction in liquid water for any charged particles and the subsequent chemical code (named PHITS-Chem code) dedicated to electrons was developed previously. In this study, we developed the PHITS-Chem code to support a broader range of ion beam species. To reduce computational time, we introduced new features including a space partitioning method to increase the detection efficiency of reactions between chemical species and a radical scavenger model that reduces the lifetime of OH radicals. We benchmarked the updated PHITS-Chem code by comparing its predicted time-dependent G values for protons, α particles, and carbon ions with those reported in the literature (i.e., other simulation and measured data). The inclusion of a space partitioning method and the modified OH radical scavenger model reduced the time required by the PHITS-Chem code to calculate G values (by approximately 28-fold during radiolysis simulations under 1-MeV electron exposure) while maintaining calculation accuracy. A key advantage of the PHITS-Chem code is the four-dimensional visualization capability, integrated with PHITS′ native visualization software, PHIG-3D. Considering the ability of the PHITS-Chem code to handle OH radical scavengers (i.e., tris(hydroxymethyl)aminomethane and dimethyl sulfoxide), it is anticipated to offer precise and intuitive insights into the radiation-induced biological effects of chemical species in ion-beam radiotherapy.

2004放射線利用
ad
ad
Follow
ad
タイトルとURLをコピーしました