AI向け半導体デバイスを前進(Advancing semiconductor devices for artificial intelligence)

ad

2025-03-28 シンガポール国立大学(NUS)

シンガポール国立大学(NUS)の研究チームは、従来型シリコントランジスタ1個で神経細胞とシナプスの挙動を模倣できることを実証した。これは、エネルギー効率の高い脳型(ニューロモーフィック)コンピューティングの実現に向けた重要な進展。研究では、トランジスタ内部の「インパクトイオン化」と「電荷トラッピング」を制御することで、神経発火とシナプス可塑性の両方を再現。また、2個のトランジスタからなる「NS-RAM」セルを開発し、低消費電力、安定動作、製造互換性を確認。既存のCMOS技術と互換性があり、大規模なAI向けチップ実装が可能とされる。

<関連情報>

標準的なシリコン・トランジスタにおけるシナプスと神経行動 Synaptic and neural behaviours in a standard silicon transistor

Sebastian Pazos,Kaichen Zhu,Marco A. Villena,Osamah Alharbi,Wenwen Zheng,Yaqing Shen,Yue Yuan,Yue Ping & Mario Lanza
Nature  Published:26 March 2025
DOI:https://doi.org/10.1038/s41586-025-08742-4

AI向け半導体デバイスを前進(Advancing semiconductor devices for artificial intelligence)

Abstract

Hardware implementations of artificial neural networks (ANNs)—the most advanced of which are made of millions of electronic neurons interconnected by hundreds of millions of electronic synapses—have achieved higher energy efficiency than classical computers in some small-scale data-intensive computing tasks1. State-of-the-art neuromorphic computers, such as Intel’s Loihi2 or IBM’s NorthPole3, implement ANNs using bio-inspired neuron- and synapse-mimicking circuits made of complementary metal–oxide–semiconductor (CMOS) transistors, at least 18 per neuron and six per synapse. Simplifying the structure and size of these two building blocks would enable the construction of more sophisticated, larger and more energy-efficient ANNs. Here we show that a single CMOS transistor can exhibit neural and synaptic behaviours if biased in a specific (unconventional) manner. By connecting one additional CMOS transistor in series, we build a versatile 2-transistor-cell that exhibits adjustable neuro-synaptic response (which we named neuro-synaptic random access memory cell, or NS-RAM cell). This electronic performance comes with a yield of 100% and an ultra-low device-to-device variability, owing to the maturity of the silicon CMOS platform used—no materials or devices alien to the CMOS process are required. These results represent a short-term solution for the implementation of efficient ANNs and an opportunity in terms of CMOS circuit design and optimization for artificial intelligence applications.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました