高圧下でのハフニウム酸化物の構造相転移を解明 (Researchers Unveil Structural Phase Transitions of Hafnium Oxide Under High Pressure)

ad

2025-03-12 中国科学院(CAS)

高圧下でのハフニウム酸化物の構造相転移を解明 (Researchers Unveil Structural Phase Transitions of Hafnium Oxide Under High Pressure)Schematic diagram of the high-pressure charge transport experimental. (Image by PAN Xiaomei)

中国科学院と西南交通大学の研究者は、ハフニウム酸化物(HfO₂)の低圧相転移に関する長年の論争を解決した。HfO₂はCMOS技術と互換性があり、メモリや低消費電力デバイスに応用可能な強誘電体材料とされるが、その構造進化に関して矛盾した報告があった。研究チームは、高圧電気輸送実験、ラマン分光法、第一原理計算を組み合わせ、約3.5 GPaで単斜晶相から斜方晶-I相に、約15.2 GPaで斜方晶-II相に相転移することを確認。また、5%のイットリウムをドーピングすると、相転移圧力が低下することが判明した。これにより、HfO₂の構造と電気的特性の関係が明確になり、将来の電子デバイス設計に貢献する可能性がある。

<関連情報>

高圧下におけるHfO2の構造と電気的特性 Structural and electrical properties of HfO2 at high pressure

Xiaomei Pan, Erqiao Xue, Wen-Guang Li, Weijin Pan, Deyuan Yao, Xin Zhang, Yuewei Yin, Peng Cheng, Qi-Jun Liu et al.
Physical Review B  Published: 4 March, 2025
DOI:https://doi.org/10.1103/PhysRevB.111.115104

Abstract

The structural and electrical properties of hafnium oxide (HfO2) have attracted significant interest due to its ferroelectric compatibility with existing silicon technologies and its scalability. Pressure has shown excellent capability in modulating the crystal structure of various materials. However, earlier works have presented conflicting results regarding the structural phase transitions in HfO2 under high pressure when different experimental methods are employed. For instance, Raman spectroscopy suggested a phase transition from the monoclinic to the orthorhombic phase at approximately 2.7–4.3 GPa, while X-ray diffraction observed no structural phase transition until 10 GPa. To clarify the crystal structure of HfO2 under high pressure, this study conducted high-pressure charge transport investigations on both pure HfO2 and 5% yttrium (Y)-doped HfO2 polycrystals. The results reveal abrupt changes in the charge transport of HfO2 at 3.5 ± 0.5 GPa and 15.2 ± 0.6 GPa, respectively. Combined analysis using high-pressure Raman spectroscopy and first-principles calculations indicates that these two transitions correspond to structural phase transitions from the monoclinic phase to the orthorhombic-I (OI) phase, and then to the orthorhombic-II (OII) phase. The doping of Y in HfO2 leads to a reduction in the phase transition pressure. Moreover, in situ ferroelectric hysteresis loop measurements under pressure suggest that the two high-pressure orthorhombic phases exhibit paraelectric properties. Our findings resolve the debate regarding pressure-induced structural phase transitions in the low-pressure region and provide deep insights into the relationship between the structure and charge transport properties of HfO2.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました