2025-03-13 中国科学院(CAS)
この技術により、2D金属の厚さを原子単位で制御することが可能となり、単層、二層、三層といった異なる層数の金属を作製できます。これにより、層数に依存する特性の解明や、新たな物理現象の探索が期待されます。さらに、この手法は2D金属合金やアモルファス、その他の非vdW化合物の製造にも応用可能であり、量子デバイスや電子・フォトニックデバイスの新たな展開が期待されています。
<関連情報>
- https://english.cas.cn/newsroom/research_news/phys/202502/t20250214_901725.shtml
- https://www.nature.com/articles/s41586-025-08711-x
オングストローム厚さ限界における2次元金属の実現 Realization of 2D metals at the ångström thickness limit
Jiaojiao Zhao,Lu Li,Peixuan Li,Liyan Dai,Jingwei Dong,Lanying Zhou,Yizhe Wang,Peihang Zhang,Kunshan Ji,Yangkun Zhang,Hua Yu,Zheng Wei,Jiawei Li,Xiuzhen Li,Zhiheng Huang,Boxin Wang,Jieying Liu,Yutong Chen,Xingchao Zhang,Shuopei Wang,Na Li,Wei Yang,Dongxia Shi,Jinbo Pan,… Guangyu Zhang
Nature Published:12 March 2025
DOI:https://doi.org/10.1038/s41586-025-08711-x
Abstract
Two-dimensional (2D) metals are appealing for many emergent phenomena and have recently attracted research interests. Unlike the widely studied 2D van der Waals (vdW) layered materials, 2D metals are extremely challenging to achieve, because they are thermodynamically unstable. Here we develop a vdW squeezing method to realize diverse 2D metals (including Bi, Ga, In, Sn and Pb) at the ångström thickness limit. The achieved 2D metals are stabilized from a complete encapsulation between two MoS2 monolayers and present non-bonded interfaces, enabling access to their intrinsic properties. Transport and Raman measurements on monolayer Bi show excellent physical properties, for example, new phonon mode, enhanced electrical conductivity, notable field effect and large nonlinear Hall conductivity. Our work establishes an effective route for implementing 2D metals, alloys and other 2D non-vdW materials, potentially outlining a bright vision for a broad portfolio of emerging quantum, electronic and photonic devices.