ロボット群をスマートマテリアルのように機能させる方法 (How to get a robot collective to act like a smart material)

ad

2025-02-21 カリフォルニア大学サンタバーバラ校 (UCSB)

ロボット群をスマートマテリアルのように機能させる方法 (How to get a robot collective to act like a smart material)
Photo Credit Brian Long/UCSB
Disk-shaped robots can act collectively to accomplish tasks such as lifting and manipulating objects, or supporting weight

カリフォルニア大学サンタバーバラ校(UCSB)とドレスデン工科大学(TU Dresden)の研究チームは、生物学に着想を得たロボット集団を開発しました。この集団は、個々の円盤状の自律ロボットで構成され、互いに連携してさまざまな形状や特性を持つ「スマートマテリアル」のように振る舞います。研究の中心人物であるマシュー・デブリン博士は、これらのロボットが内部信号に応じて形状を変化させ、必要に応じて剛性を持つ構造から流動的な構造へと変化できることを示しました。この技術は、重量物の支持や物体の操作、さらには自己修復など、多岐にわたる応用が期待されています。

<関連情報>

強度と形状を時空間的に制御する物質様ロボット集合体 Material-like robotic collectives with spatiotemporal control of strength and shape

Matthew R. Devlin, Sangwoo Kim, Otger Campàs, and Elliot W. Hawkes
Science  Published:20 Feb 2025

Editor’s summary

One vision for robotics is to design groups of simple robots that work together, for example, like a colony of ants that can move like a flowing fluid but can also form a solid structure such as a bridge for an unpassable span. Devlin et al. designed a robot collective that can switch between a “fluidizing” state and a solid state based on the rotational state of the robot. Drawing from embryonic morphogenesis, the authors identified three important components of the biological process, interunit force, polarization, and adhesion, and developed their robotic counterparts. These elements enable locally tunable mechanical properties that can be exploited to change the collective’s shape and strength. —Marc S. Lavine

Abstract

The vision of robotic materials—cohesive collectives of robotic units that can arrange into virtually any form with any physical properties—has long intrigued both science and fiction. Yet, this vision requires a fundamental physical challenge to be overcome: The collective must be strong, to support loads, yet flow, to take new forms. We achieve this in a material-like robotic collective by modulating the interunit tangential forces to control topological rearrangements of units within a tightly packed structure. This allows local control of rigidity transitions between solid and fluid-like states in the collective and enables spatiotemporal control of shape and strength. We demonstrate structure-forming and healing and show the collective supporting 700 newtons (500 times the weight of a robot) before “melting” under its own weight.

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました