火星探査機で使用された受賞アルゴリズムが、地上の科学者がデータを新しい方法で見るのを助ける(Award-Winning Algorithm Used on Mars Rover Helps Scientists on Earth See Data in a New Way)

ad

2024-09-19 ジョージア工科大学

NASAの火星探査機パーサヴィアランスで試験された新アルゴリズム「Nested Fusion」は、地球上でのハリケーンや山火事の予測向上にも役立つ可能性があります。ジョージア工科大学の博士課程の学生オースティン・P・ライトが開発し、KDD 2024で発表されました。この手法は、異なる解像度のデータセットを融合して高解像度の視覚的分布を生成し、複雑なデータの可視化を可能にします。Nested Fusionは火星の過去の生命痕跡の探索や地球科学分野でのデータ分析を支援し、高い評価を受けています。

<関連情報>

入れ子融合: 火星のマルチスケール計測データの高解像度潜在構造学習法 Nested Fusion: A Method for Learning High Resolution Latent Structure of Multi-Scale Measurement Data on Mars

Austin P. Wright, Scott Davidoff, Duen Horng Chau
KDD ’24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining  Published: 24 August 2024
DOI:https://doi.org/10.1145/3637528.3671596

Abstract

火星探査機で使用された受賞アルゴリズムが、地上の科学者がデータを新しい方法で見るのを助ける(Award-Winning Algorithm Used on Mars Rover Helps Scientists on Earth See Data in a New Way)

The Mars Perseverance Rover represents a generational change in the scale of measurements that can be taken on Mars, however this increased resolution introduces new challenges for techniques in exploratory data analysis. The multiple different instruments on the rover each measures specific properties of interest to scientists, so analyzing how underlying phenomena affect multiple different instruments together is important to understand the full picture. However each instrument has a unique resolution, making the mapping between overlapping layers of data non-trivial. In this work, we introduce Nested Fusion, a method to combine arbitrarily layered datasets of different resolutions and produce a latent distribution at the highest possible resolution, encoding complex interrelationships between different measurements and scales. Our method is efficient for large datasets, can perform inference even on unseen data, and outperforms existing methods of dimensionality reduction and latent analysis on real-world Mars rover data. We have deployed our method Nested Fusion within a Mars science team at NASA Jet Propulsion Laboratory (JPL) and through multiple rounds of participatory design enabled greatly enhanced exploratory analysis workflows for real scientists. To ensure the reproducibility of our work we have open sourced our code on GitHub at https://github.com/pixlise/NestedFusion.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました