グーグルストリートビューのデータは公衆衛生を改善できるか?(Can Google Street View Data Improve Public Health?)

ad

2024-09-17 ニューヨーク大学 (NYU)

Google Street View画像を活用したNYUの研究は、街の環境と健康との関係を分析しました。2百万枚のニューヨーク市の画像をAIで解析し、歩道や横断歩道の有無が肥満や糖尿病に与える影響を調査。横断歩道の多い地域は肥満と糖尿病の率が低い一方で、歩道と健康には有意な関連が見られませんでした。AIだけでは正確なデータ提供に限界があり、公共の健康向上にはデータと専門知識の組み合わせが重要だと結論づけました。

<関連情報>

専門知識のないビッグデータの利用は公衆衛生の意思決定に影響を与える Utilizing big data without domain knowledge impacts public health decision-making

Miao Zhang, Salman Rahman, Vishwali Mhasawade, and Rumi Chunara
Proceedings of the National Academy of Sciences  Published:September 17, 2024
DOI:https://doi.org/10.1073/pnas.2402387121

グーグルストリートビューのデータは公衆衛生を改善できるか?(Can Google Street View Data Improve Public Health?)

Abstract

New data sources and AI methods for extracting information are increasingly abundant and relevant to decision-making across societal applications. A notable example is street view imagery, available in over 100 countries, and purported to inform built environment interventions (e.g., adding sidewalks) for community health outcomes. However, biases can arise when decision-making does not account for data robustness or relies on spurious correlations. To investigate this risk, we analyzed 2.02 million Google Street View (GSV) images alongside health, demographic, and socioeconomic data from New York City. Findings demonstrate robustness challenges; built environment characteristics inferred from GSV labels at the intracity level often do not align with ground truth. Moreover, as average individual-level behavior of physical inactivity significantly mediates the impact of built environment features by census tract, intervention on features measured by GSV would be misestimated without proper model specification and consideration of this mediation mechanism. Using a causal framework accounting for these mediators, we determined that intervening by improving 10% of samples in the two lowest tertiles of physical inactivity would lead to a 4.17 (95% CI 3.84–4.55) or 17.2 (95% CI 14.4–21.3) times greater decrease in the prevalence of obesity or diabetes, respectively, compared to the same proportional intervention on the number of crosswalks by census tract. This study highlights critical issues of robustness and model specification in using emergent data sources, showing the data may not measure what is intended, and ignoring mediators can result in biased intervention effect estimates.

2100総合技術監理一般
ad
ad
Follow
ad
タイトルとURLをコピーしました