ヴァージニア工科大学の研究者が極小バイオ粒子を移動させる新しいツールを開発(Virginia Tech researcher creates new tool to move tiny bioparticles)

ad

2024-05-24 バージニア工科大学(VirginiaTech)

手術は通常侵襲的であり、ロボットの導入により小さな切開で済むようになりましたが、天津教授のチームはさらに進化した非侵襲的な方法を開発しました。
◆Science Advancesに発表された彼らの研究では、音響エネルギーを用いて体内の細胞や薬を移動させる技術を紹介しています。この方法は皮膚を切らずに対象物を移動させることができ、医療に新たな可能性をもたらします。音響エネルギー発生装置をロボットに取り付けることで、微小な物体を3D空間で精密に操作可能にし、工学、生物学、化学など多くの分野での応用が期待されています。

<関連情報>

非接触・多機能・4自由度物体操作のための、ロボット支援によるキラリティ調整可能な音響渦ピンセット Robot-assisted chirality-tunable acoustic vortex tweezers for contactless, multifunctional, 4-DOF object manipulation

TENG LI, JIALI LI, LUYU BO, HUNTER BACHMAN, […], AND ZHENHUA TIAN
Science Advances  Published:24 May 2024
DOI:https://doi.org/10.1126/sciadv.adm7698

Abstract

Robotic manipulation of small objects has shown great potential for engineering, biology, and chemistry research. However, existing robotic platforms have difficulty in achieving contactless, high-resolution, 4-degrees-of-freedom (4-DOF) manipulation of small objects, and noninvasive maneuvering of objects in regions shielded by tissue and bone barriers. Here, we present chirality-tunable acoustic vortex tweezers that can tune acoustic vortex chirality, transmit through biological barriers, trap single micro- to millimeter-sized objects, and control object rotation. Assisted by programmable robots, our acoustic systems further enable contactless, high-resolution translation of single objects. Our systems were demonstrated by tuning acoustic vortex chirality, controlling object rotation, and translating objects along arbitrary-shaped paths. Moreover, we used our systems to trap single objects in regions with tissue and skull barriers and translate an object inside a Y-shaped channel of a thick biomimetic phantom. In addition, we showed the function of ultrasound imaging–assisted acoustic manipulation by monitoring acoustic object manipulation via live ultrasound imaging.

ad
0109ロボット
ad
ad


Follow
ad
タイトルとURLをコピーしました