次世代の持続可能なエレクトロニクスは空気でドープされる(Next-generation sustainable electronics are doped with air)

ad

2024-05-16 リンショーピング大学

リンクショーピング大学のシモーネ・ファビアーノ准教授は、有機半導体のドーピング方法が開発されたと発表しました。この方法は室温で実施可能で、酸素を主要なドーパントとし、光でドーピングプロセスを活性化します。従来の高価で不安定なドーパントとは異なり、環境に優しい特徴を持ちます。光で活性化された光触媒が電子移動を助け、効率的なドーピングを実現します。この方法は、電子デバイスの製造を簡略化し、有機半導体の導電性を向上させる可能性があります。研究成果は有機エレクトロニクスの新しい基盤となると期待されています。

<関連情報>

有機半導体の光触媒ドーピング Photocatalytic doping of organic semiconductors

Wenlong Jin,Chi-Yuan Yang,Riccardo Pau,Qingqing Wang,Eelco K. Tekelenburg,Han-Yan Wu,Ziang Wu,Sang Young Jeong,Federico Pitzalis,Tiefeng Liu,Qiao He,Qifan Li,Jun-Da Huang,Renee Kroon,Martin Heeney,Han Young Woo,Andrea Mura,Alessandro Motta,Antonio Facchetti,Mats Fahlman,Maria Antonietta Loi & Simone Fabiano
Nature  Published:15 May 2024
DOI:https://doi.org/10.1038/s41586-024-07400-5

figure 1

Abstract

Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1,2,3 and ultimately enhances device performance4,5,6,7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8,9,10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm–1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.

ad
0403電子応用
ad
ad


Follow
ad
タイトルとURLをコピーしました