低コストで高効率の新しいフォトニック集積回路(A new, low-cost, high-efficiency photonic integrated circuit)

ad

2024-05-15 スイス連邦工科大学ローザンヌ校(EPFL)

フォトニック集積回路(PIC)の進展により、光通信と計算システムが大きく変わりました。シリコンベースのPICは長年支配的でしたが、電気光学変調帯域幅に限界があります。最近、リチウムタンタレート(LiTaO3)が注目されており、優れた電気光学特性とスケーラビリティ、コスト効率の良さから、高速光変調に適しています。EPFLとSIMITの研究者は、リチウムタンタレートを用いた新しいPICプラットフォームを開発し、通信波長での光損失率が5.6 dB/m、電気光学帯域幅が40 GHzの高効率なPICを実現しました。この技術は、先進的な電気光学PICのスケーラブルでコスト効率の高い製造への道を開きます。

<関連情報>

大量生産に適したタンタル酸リチウムフォトニック集積回路 Lithium tantalate photonic integrated circuits for volume manufacturing

Chengli Wang,Zihan Li,Johann Riemensberger,Grigory Lihachev,Mikhail Churaev,Wil Kao,Xinru Ji,Junyin Zhang,Terence Blesin,Alisa Davydova,Yang Chen,Kai Huang,Xi Wang,Xin Ou & Tobias J. Kippenberg
Nature  Published:08 May 2024
DOI:https://doi.org/10.1038/s41586-024-07369-1

低コストで高効率の新しいフォトニック集積回路(A new, low-cost, high-efficiency photonic integrated circuit)

Abstract

Electro-optical photonic integrated circuits (PICs) based on lithium niobate (LiNbO3) have demonstrated the vast capabilities of materials with a high Pockels coefficient1,2. They enable linear and high-speed modulators operating at complementary metal–oxide–semiconductor voltage levels3 to be used in applications including data-centre communications4, high-performance computing and photonic accelerators for AI5. However, industrial use of this technology is hindered by the high cost per wafer and the limited wafer size. The high cost results from the lack of existing high-volume applications in other domains of the sort that accelerated the adoption of silicon-on-insulator (SOI) photonics, which was driven by vast investment in microelectronics. Here we report low-loss PICs made of lithium tantalate (LiTaO3), a material that has already been adopted commercially for 5G radiofrequency filters6 and therefore enables scalable manufacturing at low cost, and it has equal, and in some cases superior, properties to LiNbO3. We show that LiTaO3 can be etched to create low-loss (5.6 dB m−1) PICs using a deep ultraviolet (DUV) stepper-based manufacturing process7. We demonstrate a LiTaO3 Mach–Zehnder modulator (MZM) with a half-wave voltage–length product of 1.9 V cm and an electro-optic bandwidth of up to 40 GHz. In comparison with LiNbO3, LiTaO3 exhibits a much lower birefringence, enabling high-density circuits and broadband operation over all telecommunication bands. Moreover, the platform supports the generation of soliton microcombs. Our work paves the way for the scalable manufacture of low-cost and large-volume next-generation electro-optical PICs.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました