良い波動:新技術がより小型で強力なワイヤレス機器につながる可能性(Good vibrations: New tech may lead to smaller, more powerful wireless devices)

ad

2024-05-03 アリゾナ大学

イヤホンがスマートフォン以上の性能を持つ未来が近づいています。アリゾナ大学の研究者は、新しい合成材料で無線技術を向上させる研究を発表しました。フォノニクスという分野では、機械振動を伝えるフォノンを活用します。研究者らは特殊な材料を使ってフォノンの相互作用を強化し、無線デバイスを小型化し効率を高める可能性を示しました。この進歩はスマートフォンなどの技術の革新に寄与するでしょう。

<関連情報>

半導体-圧電ヘテロ構造における巨大電子媒介フォノニック非線形性 Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures

Lisa Hackett,Matthew Koppa,Brandon Smith,Michael Miller,Steven Santillan,Scott Weatherred,Shawn Arterburn,Thomas A. Friedmann,Nils Otterstrom & Matt Eichenfield
Nature Materials  Published:03 May 2024
DOI:https://doi.org/10.1038/s41563-024-01882-4

良い波動:新技術がより小型で強力なワイヤレス機器につながる可能性(Good vibrations: New tech may lead to smaller, more powerful wireless devices)

Abstract

Efficient and deterministic nonlinear phononic interactions could revolutionize classical and quantum information processing at radio frequencies in much the same way that nonlinear photonic interactions have at optical frequencies. Here we show that in the important class of phononic materials that are piezoelectric, deterministic nonlinear phononic interactions can be enhanced by orders of magnitude via the heterogeneous integration of high-mobility semiconductor materials. To this end, a lithium niobate and indium gallium arsenide heterostructure is utilized to produce the most efficient three- and four-wave phononic mixing to date, to the best of our knowledge. We then show that the conversion efficiency can be further enhanced by applying semiconductor bias fields that amplify the phonons. We present a theoretical model that accurately predicts the three-wave mixing efficiencies in this work and extrapolate that these nonlinearities can be enhanced far beyond what is demonstrated here by confining phonons to smaller dimensions in waveguides and optimizing the semiconductor material properties.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました