自動車、航空宇宙、再生可能エネルギー産業にとって重要な複合材料を強化する従来にない技術(Unconventional technology enhances composites important to automotive, aerospace and renewable energy industries)

ad

2024-04-23 オークリッジ国立研究所(ORNL)

オークリッジ国立研究所の科学者たちは、自動車、航空宇宙、再生可能エネルギー産業で使用される繊維強化ポリマーコンポジット材料を、時間とともに機械的または構造的ストレスに対してより強く、耐久性を持たせる方法を開発しました。このコンポジットは軽量で強度があり、耐食性や疲労耐性もありますが、異なる材料が組み合わさっているために負荷がかかるとダメージを受けやすいです。研究チームは、繊維とマトリックスの間の界面を強化する新しい技術を開発し、その結果、コンポジットの強度を約60%、靭性を100%向上させました。この技術は特許申請中で、実用化を目指しています。

<関連情報>

階層的な界面形成による複合材料の靭性向上 Enhancing Composite Toughness Through Hierarchical Interphase Formation

Sumit Gupta, Tanvir Sohail, Marti Checa, Sargun S. Rohewal, Michael D. Toomey, Nihal Kanbargi, Joshua T. Damron, Liam Collins, Logan T. Kearney, Amit K. Naskar, Christopher C. Bowland
Advanced Science  Published: 25 December 2023
DOI:https://doi.org/10.1002/advs.202305642

自動車、航空宇宙、再生可能エネルギー産業にとって重要な複合材料を強化する従来にない技術(Unconventional technology enhances composites important to automotive, aerospace and renewable energy industries)

Abstract

High strength and ductility are highly desired in fiber-reinforced composites, yet achieving both simultaneously remains elusive. A hierarchical architecture is developed utilizing high aspect ratio chemically transformable thermoplastic nanofibers that form covalent bonding with the matrix to toughen the fiber-matrix interphase. The nanoscale fibers are electrospun on the micrometer-scale reinforcing carbon fiber, creating a physically intertwined, randomly oriented scaffold. Unlike conventional covalent bonding of matrix molecules with reinforcing fibers, here, the nanofiber scaffold is utilized ‒ interacting non-covalently with core fiber but bridging covalently with polymer matrix ‒ to create a high volume fraction of immobilized matrix or interphase around core reinforcing elements. This mechanism enables efficient fiber-matrix stress transfer and enhances composite toughness. Molecular dynamics simulation reveals enhancement of the fiber-matrix adhesion facilitated by nanofiber-aided hierarchical bonding with the matrix. The elastic modulus contours of interphase regions obtained from atomic force microscopy clearly indicate the formation of stiffer interphase. These nanoengineered composites exhibit a ≈60% and ≈100% improved in-plane shear strength and toughness, respectively. This approach opens a new avenue for manufacturing toughened high-performance composites.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました