科学者ら、水処理におけるシリカのスケーリングを制御する分子の謎を解明(Scientists reveal molecular mysteries to control silica scaling in water treatment)

ad

2024-03-06 オークリッジ国立研究所(ORNL)

エール大学の実験とエネルギー省のオークリッジ国立研究所の分子動力学シミュレーションを組み合わせた共同研究が、効率的かつ持続可能な産業運用の主要な技術障害の解決に新たな示唆を提供している。この研究では、シリコンの過飽和溶液に対するポリマーアンチスケーラントの性能が、特定の物理的・化学的特性に依存していることが明らかになり、シリカスケールの抑制に対する新たな理解が提供された。

<関連情報>

シリカスケール抑制のための機能性ポリマーの分子設計 Molecular Design of Functional Polymers for Silica Scale Inhibition

Masashi Kaneda, Dengpan Dong, Yinan Chen, Xiaowei Zhang, Yazhen Xue, Vyacheslav S. Bryantsev, Menachem Elimelech, and Mingjiang Zhong
Environmental Science & Technology  Published:December 27, 2023
DOI:https://doi.org/10.1021/acs.est.3c06504

Abstract

科学者ら、水処理におけるシリカのスケーリングを制御する分子の謎を解明(Scientists reveal molecular mysteries to control silica scaling in water treatment)

Silica polymerization, which involves the condensation reaction of silicic acid, is a fundamental process with wide-ranging implications in biological systems, material synthesis, and scale formation. The formation of a silica-based scale poses significant technological challenges to energy-efficient operations in various industrial processes, including heat exchangers and water treatment membranes. Despite the common strategy of applying functional polymers for inhibiting silica polymerization, the underlying mechanisms of inhibition remain elusive. In this study, we synthesized a series of nitrogen-containing polymers as silica inhibitors and elucidated the role of their molecular structures in stabilizing silicic acids. Polymers with both charged amine and uncharged amide groups in their backbones exhibit superior inhibition performance, retaining up to 430 ppm of reactive silica intact for 8 h under neutral pH conditions. In contrast, monomers of these amine/amide-containing polymers as well as polymers containing only amine or amide functionalities present insignificant inhibition. Molecular dynamics simulations reveal strong binding between the deprotonated silicic acid and a polymer when the amine groups in the polymer are protonated. Notably, an extended chain conformation of the polymer is crucial to prevent proximity between the interacting monomeric silica species, thereby facilitating effective silica inhibition. Furthermore, the hydrophobic nature of alkyl segments in polymer chains disrupts the hydration shell around the polymer, resulting in enhanced binding with ionized silicic acid precursors compared to monomers. Our findings provide novel mechanistic insights into the stabilization of silicic acids with functional polymers, highlighting the molecular design principles of effective inhibitors for silica polymerization.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました