新しいフォトニックチップが、飛躍的に高速でエネルギー効率に優れた人工知能を可能にする The new photonic chip enables exponentially faster and more energy-efficient artificial intelligence
2023-06-29 コロンビア大学
◆この手法はコンパクトでエネルギー効率も高く、従来の手法よりも優れています。実験では、光ファイバを通じて32個の波長チャンネルで1秒あたり16ギガビットのデータを転送し、非常に高い速度と効率を実現しました。これにより、データの転送量を指数関数的に増やすことが可能になります。この技術は実用化に向けた重要な一歩であり、将来的にはさらなる小型化と実装が期待されています。
<関連情報>
- https://www.engineering.columbia.edu/news/transferring-data-with-many-colors-of-light-simultaneously
- https://www.nature.com/articles/s41566-023-01244-7
大規模スケーラブルなカーコム駆動シリコンフォトニックリンク Massively scalable Kerr comb-driven silicon photonic link
Anthony Rizzo,Asher Novick,Vignesh Gopal,Bok Young Kim,Xingchen Ji,Stuart Daudlin,Yoshitomo Okawachi,Qixiang Cheng,Michal Lipson,Alexander L. Gaeta & Keren Bergman
Nature Photonics Published:29 June 2023
DOI:https://doi.org/10.1038/s41566-023-01244-7
Abstract
The growth of computing needs for artificial intelligence and machine learning is critically challenging data communications in today’s data-centre systems. Data movement, dominated by energy costs and limited ‘chip-escape’ bandwidth densities, is perhaps the singular factor determining the scalability of future systems. Using light to send information between compute nodes in such systems can dramatically increase the available bandwidth while simultaneously decreasing energy consumption. Through wavelength-division multiplexing with chip-based microresonator Kerr frequency combs, independent information channels can be encoded onto many distinct colours of light in the same optical fibre for massively parallel data transmission with low energy. Although previous high-bandwidth demonstrations have relied on benchtop equipment for filtering and modulating Kerr comb wavelength channels, data-centre interconnects require a compact on-chip form factor for these operations. Here we demonstrate a massively scalable chip-based silicon photonic data link using a Kerr comb source enabled by a new link architecture and experimentally show aggregate single-fibre data transmission of 512 Gb s−1 across 32 independent wavelength channels. The demonstrated architecture is fundamentally scalable to hundreds of wavelength channels, enabling massively parallel terabit-scale optical interconnects for future green hyperscale data centres.