2023-06-14 ロスアラモス国立研究所(LANL)
◆この合金は放射線耐性と高温・極限照射環境下での安定性があり、融合炉環境を模した条件下での実験結果とモデリングの合意により、融合発電の強度、経済性、予測性、投資魅力を向上させるための重要なステップとなります。研究結果は2023年5月にNature Communicationsに掲載されました。
<関連情報>
- https://discover.lanl.gov/news/0613-fusion-energy/
- https://www.nature.com/articles/s41467-023-38000-y
極限照射環境に耐えるWTaCrVHfナノ結晶耐火高エントロピー合金を開発 A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments
O. El Atwani,H. T. Vo,M. A. Tunes,C. Lee,A. Alvarado,N. Krienke,J. D. Poplawsky,A. A. Kohnert,J. Gigax,W.-Y. Chen,M. Li,Y. Q. Wang,J. S. Wróbel,D. Nguyen-Manh,J. K. S. Baldwin,O. U. Tukac,E. Aydogan,S. Fensin & E. Martinez
Nature Communications Published:02 May 2023
DOI:https://doi.org/10.1038/s41467-023-38000-y
Abstract
In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission & fusion reactors, space applications, etc.), design, prediction and control of advanced materials beyond current material designs become paramount. Here, through a combined experimental and simulation methodology, we design a nanocrystalline refractory high entropy alloy (RHEA) system. Compositions assessed under extreme environments and in situ electron-microscopy reveal both high thermal stability and radiation resistance. We observe grain refinement under heavy ion irradiation and resistance to dual-beam irradiation and helium implantation in the form of low defect generation and evolution, as well as no detectable grain growth. The experimental and modeling results—showing a good agreement—can be applied to design and rapidly assess other alloys subjected to extreme environmental conditions.