転がり接触型ロボット関節の最適設計手法(Optimizing Robotic Joints)

2026-02-02 ハーバード大学

米国ハーバード大学工学応用科学部(Harvard John A. Paulson School of Engineering and Applied Sciences)の研究チームは、ロボット関節の設計と制御を同時に最適化する新手法を提案した。従来は機構設計と制御設計が別々に行われていたが、本研究では材料特性、形状、駆動方式と制御アルゴリズムを統合的に解析することで、エネルギー効率と運動性能を両立させる関節設計を実現した。シミュレーションと実験により、柔軟性を活かした関節が安定性と適応性を向上させることを示し、次世代ロボットや義肢への応用が期待される。

転がり接触型ロボット関節の最適設計手法(Optimizing Robotic Joints)
An optimized rolling contact joint.

<関連情報>

非円形転がり接触ジョイントはロボットリンクのプログラムされた動作を可能にする Noncircular rolling contact joints enable programmed behavior in robotic linkages

Colter J. Decker, Tony G. Chen, Michelle C. Yuen, and Robert J. Wood
Proceedings of the National Academy of Sciences  Published:February 2, 2026
DOI:https://doi.org/10.1073/pnas.2521406123

Significance

We describe an optimization routine to design rolling contact joints with customized kinematics. This compact and robust mechanism can be “programmed” with desired end-effector paths and variable mechanical transmission ratios while maintaining flexibility in off-axis directions. This hybrid system of rigid links and flexible joints results in mechanisms that are robust to impacts, while maintaining precise controllability and high load-bearing capacities. The programmability of the joints allow them to closely match desired paths such as the biomechanics of humans or animals, potentially improving assistive devices and bioinspired robots. The flexible optimization routine can be modified to generate multijoint kinematic chains coupled to a single actuation input, as well as passive joints coupled with elastic elements to create nonlinear springs.

Abstract

Rolling contact joints (RCJs) guide motion in robotic linkages, including manipulators, surgical devices, prosthetics, and more. In this work, we present a generalized optimization method to tailor the kinematic properties of RCJs by simultaneously optimizing both noncircular surface geometries and internal actuation pulley shapes. Our approach accommodates multiple joint types, including passively coupled systems with programmable spring stiffness as well as actuated single or multilink mechanisms. We explicitly incorporate common and practical manufacturing constraints into our optimization framework, such as size and convexity constraints. To demonstrate this approach, we optimize an RCJ designed to replicate the trajectory of a human knee, achieving a 99.6% reduction in alignment error compared to revolute joints and a 99.3% error reduction compared to circular RCJs. Additionally, we show that optimized RCJs increase the load-carrying capacity of a two-finger gripper by more than 3.5 times compared to a comparable circular-jointed design, showcasing how joint optimization can enhance robotic performance.

0103機械力学・制御
ad
ad
Follow
ad
タイトルとURLをコピーしました