電力網の最適化を高速化する新ツールを開発(Faster problem-solving tool guarantees feasibility)

2025-11-03 マサチューセッツ工科大学(MIT)

Web要約 の発言:
MITの研究チームは、電力網運用など複雑な最適化課題を高速かつ確実に解く新手法「FSNet」を開発した。FSNetは、ニューラルネットワークによる初期予測と、制約条件を厳密に満たす可行性探索アルゴリズムを組み合わせたハイブリッド方式で、従来の最適化ソルバーよりも数倍から数桁速く解を導出する。電力線容量や発電制限などの制約を破らず、現実的な解を保証できるのが特徴で、再生可能エネルギー導入で不安定化する電力供給の最適化に特に有効。従来のAI手法より高精度で安定した結果を得られ、設計、金融、物流など多分野の複雑システム最適化への応用が期待される。成果はNeurIPS会議で発表予定。

<関連情報>

FSNet: 保証付き制約最適化のための実現可能性探索ニューラルネットワーク FSNet: Feasibility-Seeking Neural Network for Constrained Optimization with Guarantees

Hoang T. Nguyen, Priya L. Donti
arXiv  ast revised 24 Oct 2025 (this version, v2)
DOI:https://doi.org/10.48550/arXiv.2506.00362

電力網の最適化を高速化する新ツールを開発(Faster problem-solving tool guarantees feasibility)

Abstract

Efficiently solving constrained optimization problems is crucial for numerous real-world applications, yet traditional solvers are often computationally prohibitive for real-time use. Machine learning-based approaches have emerged as a promising alternative to provide approximate solutions at faster speeds, but they struggle to strictly enforce constraints, leading to infeasible solutions in practice. To address this, we propose the Feasibility-Seeking Neural Network (FSNet), which integrates a feasibility-seeking step directly into its solution procedure to ensure constraint satisfaction. This feasibility-seeking step solves an unconstrained optimization problem that minimizes constraint violations in a differentiable manner, enabling end-to-end training and providing guarantees on feasibility and convergence. Our experiments across a range of different optimization problems, including both smooth/nonsmooth and convex/nonconvex problems, demonstrate that FSNet can provide feasible solutions with solution quality comparable to (or in some cases better than) traditional solvers, at significantly faster speeds.

0401発送配変電
ad
ad
Follow
ad
タイトルとURLをコピーしました