記憶チップのエネルギー消費を大幅削減する材料の発見(Material breakthrough for energy-saving memory chips)

2025-09-26 チャルマース工科大学

チャルマース工科大学の研究チームは、世界で初めて強磁性と反強磁性という二つの磁性を同時に持つ原子層材料を開発し、メモリチップの消費電力を10分の1に削減できる可能性を示しました。新素材はコバルト、鉄、ゲルマニウム、テルルからなる二次元結晶で、内部に傾いた磁気配列を持つため外部磁場なしで電子スピンを切り替えられます。これにより電力を大幅に削減しつつ、製造の簡易化と信頼性向上も実現。AIやモバイル機器、スーパーコンピューティングに応用可能で、将来的にデータ処理が世界エネルギー消費の約30%を占めるとの予測に対抗する重要技術となります。

記憶チップのエネルギー消費を大幅削減する材料の発見(Material breakthrough for energy-saving memory chips)
It is anticipated that, within just a few decades, the surging volume of digital data will constitute one of the world’s largest energy consumers. Now, researchers at Chalmers University of Technology, Sweden, have made a breakthrough that could shift the paradigm: an atomically thin material that enables two opposing magnetic forces to coexist – dramatically reducing energy consumption in memory devices by a factor of ten. This discovery could pave the way for a new generation of ultra-efficient, reliable memory solutions for AI, mobile technology and advanced data processing.

<関連情報>

共存する非自明なファンデルワールス磁気秩序が磁場フリーのスピン軌道トルク磁化ダイナミクスを可能にする Coexisting Non-Trivial Van der Waals Magnetic Orders Enable Field-Free Spin-Orbit Torque Magnetization Dynamics

Bing Zhao, Lakhan Bainsla, Soheil Ershadrad, Lunjie Zeng, Roselle Ngaloy, Peter Svedlindh, Eva Olsson, Biplab Sanyal, Saroj P. Dash
Advanced Materials  Ppublished: 01 July 2025
DOI:https://doi.org/10.1002/adma.202502822

Abstract

The discovery of van der Waals (vdW) magnetic materials exhibiting non-trivial and tunable magnetic interactions can lead to exotic magnetic states that are not readily attainable with conventional materials. Such vdW magnets can provide a unique platform for studying new magnetic phenomena and realizing magnetization dynamics for energy-efficient and non-volatile spintronic memory and computing technologies. Here, the coexistence of ferromagnetic and antiferromagnetic orders in vdW magnet (Co0.5Fe0.5)5-xGeTe2 (CFGT) above room temperature, inducing an intrinsic exchange bias and canted perpendicular magnetism is discovered. Such non-trivial intrinsic magnetic order enables to realize energy-efficient, magnetic field-free, and deterministic spin-orbit torque (SOT) switching of CFGT in heterostructure with Pt. These experiments, in conjunction with density functional theory and Monte Carlo simulations, demonstrate the coexistence of non-trivial magnetic orders in CFGT, which enables field-free SOT magnetization dynamics in spintronic devices.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました