ドロマイト大理石における無生物有機合成の駆動因子を解明(Researchers Uncover Ferrous Chloride-Rich Fluids Drive Abiotic Organic Synthesis in Dolomitic Marble)

2025-09-03 中国科学院(CAS)

中国科学院地質与地球物理研究所(IGGCAS)の郭舜教授・劉景波教授らと浙江海洋大学の研究チームは、蘇魯超高圧変成帯の苦灰質大理石を解析し、FeCl2に富む流体の浸透が脱炭酸反応を引き起こし、水素(H2)と磁鉄鉱を生成、それが非生物的有機合成を駆動することを実証した。約2.18億年前、670–800℃・1.0 GPa超の条件下で進行した反応により、メタン(CH4)、炭質物、シュウ酸カルシウム水和物などの有機物が形成され、H2やCO、CO2と共に保存されていた。質量収支解析では、外部由来の鉄が供給され、1kgの変成岩から72–142 mmolのH2が生成されたと推定され、これは蛇紋岩化に匹敵する規模である。生成した磁鉄鉱が触媒となり、Fischer–Tropsch型反応を通じてCO2からCH4や複雑な有機構造が形成された。本成果は、高温高圧下での鉄に富む流体が非生物的有機合成を促進する自然証拠を提示し、地質学的水素資源や生命起源研究に新知見を与える。

ドロマイト大理石における無生物有機合成の駆動因子を解明(Researchers Uncover Ferrous Chloride-Rich Fluids Drive Abiotic Organic Synthesis in Dolomitic Marble)
Schematic illustration of H2 generation and abiotic organic synthesis during metasomatism of dolomitic marble by ferrous chloride-rich silicic fluids in a continental subduction zone. (Image by FEI Chenhui).

<関連情報>

高変成条件下における塩化第二鉄豊富な珪酸質流体と大理石の相互作用時の非生物的合成 Abiotic synthesis during the interaction of ferrous chloride–rich silicic fluids with marble under high-grade metamorphic conditions

Chenhui Fei, Shun Guo, Yibing Li, and Jingbo Liu
Proceedings of the National Academy of Sciences  Published:August 28, 2025
DOI:https://doi.org/10.1073/pnas.2423043122

Significance

Abiotic organic synthesis in geological processes is closely linked to the Earth’s carbon cycle and the origin of early life. Our research revealed that the infiltration of ferrous chloride–rich silicic fluids into dolomitic marble induced a decarbonation reaction (T >670 °C, P >1.0 GPa) that produced H2 and magnetite, facilitating magnetite-catalyzed organic synthesis. This study highlights the role of aqueous Fe in the generation of H2 and magnetite and extends the scope of research on abiotic organic synthesis in natural samples from low-grade to high-grade metamorphic conditions.

Abstract

Ferrous chloride–rich silicic fluid and melt infiltration led to the decarbonation of dolomitic marble in the Chinese Sulu ultrahigh-pressure metamorphic terrain under temperatures ranging from 670 to 800 °C, pressures from the aragonite + albite to calcite stability fields and the oxygen fugacities between the hematite–magnetite and pyrite–pyrrhotite–magnetite buffers, resulting in the formation of olivine marble and diopsidite. The inclusions in zircons trapped during the decarbonation process suggest that the H2-producing reaction 3FeCl2 (aq) + 3CaCO3 + H2O = Fe3O4 (magnetite) + 3CaCl2 (aq) + 3CO2 + H2 occurred and that it induced magnetite-catalyzed Fischer–Tropsch-type synthesis, as indicated by the presence of whewellite, disordered carbonaceous material, CH4, and CO in the inclusions. The results of this study highlight the role of aqueous Fe in generating H2 and magnetite and have far-reaching implications for carbon speciation and solubility in deep fluids and for endogenic abiotic synthesis, which may be pivotal in the prebiotic occurrence of organic compounds on Earth.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました