牧草地データセットがチベット高原の生態保護に寄与(Pasture Dataset Boosts Ecoprotection on Qinghai-Xizang Plateau)

2025-07-04 中国科学院(CAS)

中国の研究チーム(蘭州大学、北京大学、中国科学院)は、青海・チベット高原の人工草地に関する衛星リモートセンシングデータを用いた新たなデータセットを作成し、同地域の生態保護強化に貢献している。この研究は1988〜2021年にわたる人工草地の分布・変化を明らかにし、草地管理と持続可能な畜産振興に資するもの。青海とチベットで人工草地は合計157万haに達し、青海がその70%を占める。人工草地は炭素貯蔵や水・栄養循環、生物多様性維持、牧畜民の生活支援など重要な役割を果たし、近年の気候変動や人為的要因による草地劣化の緩和にも寄与している。

<関連情報>

1988年から2021年までのチベット高原の年間30m耕作牧草地データセット An annual 30 m cultivated-pasture dataset of the Tibetan Plateau from 1988 to 2021

Binghong Han, Jian Bi, Shengli Tao, Tong Yang, Yongli Tang, Mengshuai Ge, Hao Wang, Zhenong Jin, Jinwei Dong, Zhibiao Nan, and Jin-Sheng He
Earth System Science Data  Published:27 Jun 2025
DOI:https://doi.org/10.5194/essd-17-2933-2025

牧草地データセットがチベット高原の生態保護に寄与(Pasture Dataset Boosts Ecoprotection on Qinghai-Xizang Plateau)

Abstract

Cultivated pastures have rapidly developed across the Tibetan Plateau over the past several decades, raising concerns about grassland degradation. Accordingly, considerable attention is paid to the protection of Tibetan grassland ecosystems. However, high-resolution spatial distribution of cultivated pastures on the Tibetan Plateau remains poorly understood, primarily due to the difficulty in discriminating cultivated pastures from other land cover types using remote sensing techniques. The absence of such information hinders efficient agricultural and livestock husbandry management, making it challenging to support ecological protection and restoration efforts. Here, we mapped the cultivated pastures on the Tibetan Plateau at a 30 m resolution for the years 1988 to 2021 using Landsat data from the Google Earth Engine (GEE) cloud computing platform. We built a random forest (RF) binary classification model with inputs of the spectral–temporal metrics of Landsat data acquired in the growing season, as well as ancillary topographic data. The model was trained using carefully selected training samples and was validated against 2000 independent random reference points in two pilot study regions with different climates and landscapes. The model achieved an overall accuracy of 97.05 % ± 0.4 % and an F1 spatial consistency score of 82.51 % ± 14.22 % (precision: 90.04 % ± 6.18 %; recall: 76.74 % ± 9.91 %), suggesting high confidence in mapping the distribution of cultivated pastures on the plateau. Using the RF model, we then produced a dataset of cultivated-pasture maps for the years from 1988 to 2021 for Qinghai Province and the Tibet Autonomous Region on the Tibetan Plateau, covering 77 % of the plateau. At both the province and county levels, the cultivated-pasture areas estimated in this study matched well with government statistics for recent years. The area of cultivated pastures on the Tibetan Plateau experienced a significant expansion from 0.46 Mha in 1988 to 1.57 Mha in 2021, with an average annual growth of 33.5±2.5 Kha. To our knowledge, we are the first to map cultivated pastures on the Tibetan Plateau, and our RF binary classification approach holds promise in identifying cultivated pastures in other regions of the world, which could prove to be invaluable for scientists, policymakers, ecological conservation practitioners, and herdspeople. The dataset is available on Zenodo at https://doi.org/10.5281/zenodo.14271782 (Han et al., 2024).

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました