都市鉱山技術による重要鉱物の回収(Enabling Urban Mining of Critical Minerals from Domestic Electronic Waste)

ad

2025-05-20 パシフィック・ノースウェスト国立研究所(PNNL)

都市鉱山技術による重要鉱物の回収(Enabling Urban Mining of Critical Minerals from Domestic Electronic Waste)
An energy-efficient, novel reaction–diffusion process successfully separates iron, dysprosium, and neodymium without relying on traditional ligands, membranes, or resins. (Image by Qingpu Wang | Pacific Northwest National Laboratory)

米国パシフィック・ノースウェスト国立研究所(PNNL)の研究チームは、電子廃棄物(e-waste)から重要鉱物資源を効率的に回収する新技術を開発しました。この手法は、従来の高エネルギー・高化学薬品依存の分離法とは異なり、反応拡散プロセスを利用して、鉄、ジスプロシウム、ネオジムなどの希土類元素を段階的に分離します。特に、鉄を初期段階で除去し、続いてジスプロシウムとネオジムを選択的に沈殿させることで、特殊な化学薬品や膜、樹脂を使用せずに高純度の回収が可能となりました。この技術は、エネルギー消費と化学薬品使用を最小限に抑え、環境負荷を軽減しつつ、都市鉱山からの重要資源の回収を促進することが期待されています。

<関連情報>

反応拡散カップリングによる模擬電子廃棄物からの重要鉱物の選択的回収 Selective Recovery of Critical Minerals from Simulated Electronic Wastes Via Reaction-Diffusion Coupling

Dr. Qingpu Wang, Dr. Yucheng Fu, Dr. Erin A. Miller, Dr. Duo Song, Philip J. Brahana, Dr. Andrew Ritchhart, Dr. Zhijie Xu, Dr. Grant E. Johnson, Prof. Dr. Bhuvnesh Bharti, Dr. Maria L. Sushko, Dr. Elias Nakouzi
ChemSusChem  Published: 05 February 2025
DOI:https://doi.org/10.1002/cssc.202402372

Abstract

Atom- and energy-efficient chemical separations are urgently needed to meet the surging demand for critical materials that has strained supply chains and threatened environmental damage. In this study, we used reaction-diffusion coupling to separate iron, neodymium, and dysprosium ions from model feedstocks of permanent magnets, which are typically found in electronic wastes. Feedstock solutions were placed in contact with a hydrogel loaded with potassium hydroxide and/or dibutyl phosphate, resulting in complex precipitation patterns as the various metal ions diffused into the reaction medium. Specifically, we observed the precipitation of up to 40 mM of iron from the feedstock, followed by the enrichment of 73 % dysprosium, and the extraction of >95 % neodymium product at a further distance from the solution-gel interface. We designed a series of experiments and simulations to determine the relevant ion diffusivities, DNd=5.4×10−10 and DDy=5.1×10−10 m2/s, and precipitation rates, kNd =1.0×10−5 and kDy=5.0×10−3 m9 mol−3 s−1, which enabled a numerical model to be established for predicting the distribution of products in the reaction medium. Our proof-of-concept study validates reaction-diffusion coupling as an effective and versatile approach for critical materials separations, without relying on ligands, membranes, resins, or other specialty chemicals.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました