宇宙プロセスの組み合わせがサブ海王星の大きさと位置を形作る(Combination of cosmic processes shapes the size and location of sub-Neptunes)

ad

2025-03-17 ペンシルベニア州立大学(PennState)

ペンシルベニア州立大学の研究チームは、NASAのTESSのデータを用いて、若い恒星の周囲を公転するサブネプチューンの形成プロセスを調査した。研究では、軌道周期が12日以内で半径が地球の1.8~10倍の惑星を対象とし、10~1億年の恒星周辺では頻度が低く、1億~10億年では高まり、その後再び低下する傾向が確認された。この結果から、サブネプチューンは恒星から遠くで形成され、惑星同士の重力相互作用や円盤の影響で内側へ移動し、さらに恒星の放射線による大気損失がサイズや組成に影響を与えると考えられる。

<関連情報>

短周期太陽系外惑星の時間発展における大気質量放出と惑星移動の兆候 Signatures of Atmospheric Mass Loss and Planet Migration in the Time Evolution of Short-period Transiting Exoplanets

Rachel B. Fernandes, Galen J. Bergsten, Gijs D. Mulders, Ilaria Pascucci, Kevin K. Hardegree-Ullman, Steven Giacalone, Jessie L. Christiansen, James G. Rogers, Akash Gupta, Rebekah I. Dawson,…
The Astronomical Journal  Published: 2025 March 17
DOI:10.3847/1538-3881/adb97e

宇宙プロセスの組み合わせがサブ海王星の大きさと位置を形作る(Combination of cosmic processes shapes the size and location of sub-Neptunes)

Abstract

Comparative studies of young and old exoplanet populations offer a glimpse into how planets may form and evolve with time. We present an occurrence rate study of short-period (<12 days) planets between 1.8 and 10 R around 1374 FGK stars in nearby (200 pc) young clusters (<1 Gyr), utilizing data from the Transiting Exoplanet Survey Satellite mission. These planets represent a population closer to their primordial state. We find that the occurrence rate of young planets is higher (64+32−22%) compared to the Gyr-old population observed by Kepler (7.98+0.37−0.35%). Dividing our sample into bins of young (10–100 Myr) and intermediate (100 Myr–1 Gyr) ages, we also find that the occurrence distribution in orbital period remains unchanged, while the distribution in planet radius changes with time. Specifically, the radius distribution steepens with age, indicative of a larger planet population shrinking due to the atmospheric thermal cooling and mass loss. We also find evidence for an increase (1.9σ) in occurrence after 100 Myr, possibly due to tidal migration driving planets inside of 12 days. While evidence suggests that postdisk migration and atmospheric mass loss shape the population of short-period planets, more detections of young planets are needed to improve statistical comparisons with older planets. Detecting long-period young planets and planets <1.8 R will help us understand these processes better. Additionally, studying young planetary atmospheres provides insights into planet formation and the efficiency of atmospheric mass-loss mechanisms on the evolution of planetary systems.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました