効果の異質性を解釈するフレームワーク~機械学習を用いた解釈可能性のための実践的枠組みを提唱~

ad

2025-03-10 京都大学

京都大学の研究チームは、機械学習を用いた効果の異質性分析において、科学コミュニケーションを考慮した実践的フレームワークを提案しました。機械学習による因果関係分析はデータドリブンな知見を提供しますが、意思決定との齟齬が課題でした。本研究では、決定木を活用して効果の異質性が大きい集団を特定し、解釈性を評価する指標を導入することで、機械学習の示すパターンと実際の意思決定ニーズを統合的に分析する手法を開発しました。この枠組みは、疫学研究における機械学習の活用を促進し、科学的コミュニケーションの向上に貢献すると期待されます。本成果は「European Journal of Epidemiology」に掲載されました。

<関連情報>

異種治療効果解析のための2段階の実用的サブグループ発見:解釈可能性の向上への展望 Two-step pragmatic subgroup discovery for heterogeneous treatment effects analyses: perspectives toward enhanced interpretability

Toshiaki Komura,Falco J. Bargagli-Stoffi,Koichiro Shiba & Kosuke Inoue
European Journal of Epidemiology  Published:04 March 2025
DOI:https://doi.org/10.1007/s10654-025-01215-y

効果の異質性を解釈するフレームワーク~機械学習を用いた解釈可能性のための実践的枠組みを提唱~

Abstract

Effect heterogeneity analyses using causal machine learning algorithms have gained popularity in recent years. However, the interpretation of estimated individualized effects requires caution because insights from these data-driven approaches might be misaligned with the contextual needs of a human audience. Thus, a practical framework that integrates advanced machine learning methods and decision-making remains critically needed to achieve effective implementation and scientific communication. We introduce a 2-step framework to identify characteristics associated with substantial effect heterogeneity in a practically relevant format. The proposed framework applies distinct sets of covariates for (i) estimation of individualized effects and (ii) subgroup discovery and shows the subgroups with heterogeneity based on highly interpretable if-then rules. By referring to existing metrics of interpretability, we describe how each step contributes to leveraging a theoretical advantage of machine learning models while creating an interpretable and practically relevant framework. We applied the pragmatic subgroup discovery framework for the Look AHEAD (Action for Health in Diabetes) trial to assess practically relevant and comprehensive insights into the effect heterogeneities of intense lifestyle intervention for individuals with diabetes on cardiovascular mortality. Our analysis identified (i) individuals with history of cardiovascular disease and myocardial infarction had the least benefit from the intervention, while (ii) individuals with no history of cardiovascular diseases and HbA1c < 7% received the highest benefit. In summary, our practical framework for heterogeneous effects discovery could be a generic strategy to ensure both effective implementation and scientific communication when applying machine learning algorithms in epidemiological research.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました