未来の車をデザインしてみませんか? 始めるための 8,000 のデザインをご紹介します。(Want to design the car of the future? Here are 8,000 designs to get you started.)

ad

2024-12-05 MIT

未来の車をデザインしてみませんか? 始めるための 8,000 のデザインをご紹介します。(Want to design the car of the future? Here are 8,000 designs to get you started.)

MITの研究者たちは、8,000以上の車両デザインとその空力特性を含む大規模なオープンソースデータセットを開発しました。このデータセットは、車両の3D形状を多様な形式で提供し、空力性能をシミュレーション済みです。これにより、環境に優しい車両や電気自動車の効率的な設計が可能となります。従来は非公開だった車両デザインの詳細を共有することで、燃費効率の向上や航続距離の改善を促進。多様なAIモデルで利用可能な形式で公開し、業界全体の革新を加速することを目指しています。

<関連資料>

DrivAerNet++: 計算流体力学シミュレーションとディープラーニングベンチマークを備えた大規模なマルチモーダル自動車データセット DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks

Mohamed Elrefaie, Florin Morar, Angela Dai, Faez Ahmed
arXiv  last revised 13 Feb 2025 (this version, v2)
https://doi.org/10.48550/arXiv.2406.09624

Abstract

We present DrivAerNet++, the largest and most comprehensive multimodal dataset for aerodynamic car design. DrivAerNet++ comprises 8,000 diverse car designs modeled with high-fidelity computational fluid dynamics (CFD) simulations. The dataset includes diverse car configurations such as fastback, notchback, and estateback, with different underbody and wheel designs to represent both internal combustion engines and electric vehicles. Each entry in the dataset features detailed 3D meshes, parametric models, aerodynamic coefficients, and extensive flow and surface field data, along with segmented parts for car classification and point cloud data. This dataset supports a wide array of machine learning applications including data-driven design optimization, generative modeling, surrogate model training, CFD simulation acceleration, and geometric classification. With more than 39 TB of publicly available engineering data, DrivAerNet++ fills a significant gap in available resources, providing high-quality, diverse data to enhance model training, promote generalization, and accelerate automotive design processes. Along with rigorous dataset validation, we also provide ML benchmarking results on the task of aerodynamic drag prediction, showcasing the breadth of applications supported by our dataset. This dataset is set to significantly impact automotive design and broader engineering disciplines by fostering innovation and improving the fidelity of aerodynamic evaluations. Dataset and code available at: this https URL.

0108交通物流機械及び建設機械
ad
ad
Follow
ad
タイトルとURLをコピーしました