ニューラルネットワークの継続的学習を可能にする新しいアルゴリズム(New Algorithm Enables Neural Networks to Learn Continuously)

ad

2024-10-09 カリフォルニア工科大学(Caltech)

カリフォルニア工科大学(Caltech)の研究者たちは、人工ニューラルネットワークが継続的に学習できる新しいアルゴリズム「FIP(Functionally Invariant Path)アルゴリズム」を開発しました。このアルゴリズムは、追加のデータを学習しても既存の知識を忘れることなく更新を可能にします。これは、生物の脳が新しいスキルを学ぶ際の柔軟性に着想を得たもので、オンラインの推薦システムや自動運転車の改善など、さまざまな分野で応用が期待されています。

<関連情報>

機能不変パスのトラバースによる柔軟な機械学習システムのエンジニアリング Engineering flexible machine learning systems by traversing functionally invariant paths

Guruprasad Raghavan,Bahey Tharwat,Surya Narayanan Hari,Dhruvil Satani,Rex Liu & Matt Thomson
Nature Machine Intelligence  Published:03 October 2024
DOI:https://doi.org/10.1038/s42256-024-00902-x

ニューラルネットワークの継続的学習を可能にする新しいアルゴリズム(New Algorithm Enables Neural Networks to Learn Continuously)

Abstract

Contemporary machine learning algorithms train artificial neural networks by setting network weights to a single optimized configuration through gradient descent on task-specific training data. The resulting networks can achieve human-level performance on natural language processing, image analysis and agent-based tasks, but lack the flexibility and robustness characteristic of human intelligence. Here we introduce a differential geometry framework—functionally invariant paths—that provides flexible and continuous adaptation of trained neural networks so that secondary tasks can be achieved beyond the main machine learning goal, including increased network sparsification and adversarial robustness. We formulate the weight space of a neural network as a curved Riemannian manifold equipped with a metric tensor whose spectrum defines low-rank subspaces in weight space that accommodate network adaptation without loss of prior knowledge. We formalize adaptation as movement along a geodesic path in weight space while searching for networks that accommodate secondary objectives. With modest computational resources, the functionally invariant path algorithm achieves performance comparable with or exceeding state-of-the-art methods including low-rank adaptation on continual learning, sparsification and adversarial robustness tasks for large language models (bidirectional encoder representations from transformers), vision transformers (ViT and DeIT) and convolutional neural networks.

1602ソフトウェア工学
ad
ad
Follow
ad
タイトルとURLをコピーしました