NASAの画像が巨大ブラックホールの食習慣の説明に役立つ(NASA Images Help Explain Eating Habits of Massive Black Hole)

ad

2024-05-09 NASA

NASAの引退したスピッツァー宇宙望遠鏡のデータから、なぜ一部の超大質量ブラックホールが他と異なる光を放つのかについての新たな洞察が得られました。アンドロメダ銀河の中心にある超大質量ブラックホールへと流れ込む、何千光年もの長さの塵の流れが、これらのブラックホールが巨大な食欲を持ちながらも「静かな」摂食者である理由を説明する手がかりを提供しています。塵の流れが一定して小さいクラスターで消費されるため、発光の変動が少なく、安定した摂食を示しています。これらの発見は、アンドロメダ銀河のシミュレーションとスピッツァー望遠鏡のデータにより裏付けられています。

<関連情報>

サブ・エディントン型超大質量ブラックホールの降着モード: アンドロメダ座の中心パーセクに入る The Accretion Mode in Sub-Eddington Supermassive Black Holes: Getting into the Central Parsecs of Andromeda

C. Alig, A. Prieto, M. Blaña, M. Frischman, C. Metzl, A. Burkert, O. Zier,, and A. Streblyanska
The Astrophysical Journal  Published: 2023 August 9
DOI:10.3847/1538-4357/ace2c3

NASAの画像が巨大ブラックホールの食習慣の説明に役立つ(NASA Images Help Explain Eating Habits of Massive Black Hole)

Abstract

The inner kiloparsec regions surrounding sub-Eddington (luminosity less than 10−3 in Eddington units, LEdd) supermassive black holes (BHs) often show a characteristic network of dust filaments that terminate in a nuclear spiral in the central parsecs. Here we study the role and fate of these filaments in one of the least accreting BHs known, M31 (10−7LEdd) using hydrodynamical simulations. The evolution of a streamer of gas particles moving under the barred potential of M31 is followed from kiloparsec distance to the central parsecs. After an exploratory study of initial conditions, a compelling fit to the observed dust/ionized gas morphologies and line-of-sight velocities in the inner hundreds of parsecs is produced. After several million years of streamer evolution, during which friction, thermal dissipation, and self-collisions have taken place, the gas settles into a disk tens of parsecs wide. This is fed by numerous filaments that arise from an outer circumnuclear ring and spiral toward the center. The final configuration is tightly constrained by a critical input mass in the streamer of several 103M (at an injection rate of 10−4⊙yr−1); values above or below this lead to filament fragmentation or dispersion respectively, which are not observed. The creation of a hot gas atmosphere in the region of ∼106 K is key to the development of a nuclear spiral during the simulation. The final inflow rate at 1 pc from the center is ∼1.7 × 10−7M yr−1, consistent with the quiescent state of the M31 BH.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました