2023-11-02 オランダ・デルフト工科大学(TUDelft)
◆a-SiCは強度と拡張性を兼ね備え、超感度センサーから太陽電池、宇宙探査、DNAシーケンシング技術など、多くの応用分野に可能性を持たらしています。この素材の特徴は、非晶質であることで、原子の配置が規則的でないにもかかわらず、驚異的な強度を備えています。その引張強度は10ギガパスカルで、これを想像すると、約10台の中型車をストリップにぶら下げない限り、そのストリップを引き裂くことができないことがわかります。
<関連情報>
- https://www.tudelft.nl/en/2023/3me/news/tu-delft-researchers-discover-new-ultra-strong-material-for-microchip-sensors
- https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202306513
ナノメカニクスのための高強度アモルファス炭化ケイ素 High-Strength Amorphous Silicon Carbide for Nanomechanics
Minxing Xu, Dongil Shin, Paolo M. Sberna, Roald van der Kolk, Andrea Cupertino, Miguel A. Bessa, Richard A. Norte
Advanced Materials Published: 12 October 2023
DOI:https://doi.org/10.1002/adma.202306513
Abstract
For decades, mechanical resonators with high sensitivity have been realized using thin-film materials under high tensile loads. Although there have been remarkable strides in achieving low-dissipation mechanical sensors by utilizing high tensile stress, the performance of even the best strategy is limited by the tensile fracture strength of the resonator materials. In this study, a wafer-scale amorphous thin film is uncovered, which has the highest ultimate tensile strength ever measured for a nanostructured amorphous material. This silicon carbide (SiC) material exhibits an ultimate tensile strength of over 10 GPa, reaching the regime reserved for strong crystalline materials and approaching levels experimentally shown in graphene nanoribbons. Amorphous SiC strings with high aspect ratios are fabricated, with mechanical modes exceeding quality factors 108 at room temperature, the highest value achieved among SiC resonators. These performances are demonstrated faithfully after characterizing the mechanical properties of the thin film using the resonance behaviors of free-standing resonators. This robust thin-film material has significant potential for applications in nanomechanical sensors, solar cells, biological applications, space exploration and other areas requiring strength and stability in dynamic environments. The findings of this study open up new possibilities for the use of amorphous thin-film materials in high-performance applications.