新しい量子デバイスが単一光子を生成し情報を暗号化する(New quantum device generates single photons and encodes information)

ad

2023-08-24 ロスアラモス国立研究所(LANL)

◆ロスアラモス国立研究所の研究チームが、二つの異なる原子薄膜材料を積み重ねることで、外部磁場を必要とせずに循環偏光の単一の光子ストリームを生成する新しい量子光エミッターを開発しました。
◆この成果は、量子情報と通信の分野で重要な進歩であり、量子暗号学や通信に応用が期待されます。磁場や複雑な光学構造などの高コストな手法を必要とせず、低コストで信頼性の高い光源を実現しました。これにより、量子情報技術の発展に寄与する可能性があります。

<関連情報>

歪み制御されたWSe2/NiPS3ヘテロ構造における近接誘起キラル量子光発生 Proximity-induced chiral quantum light generation in strain-engineered WSe2/NiPS3 heterostructures

Xiangzhi Li,Andrew C. Jones,Junho Choi,Huan Zhao,Vigneshwaran Chandrasekaran,Michael T. Pettes,Andrei Piryatinski,Märta A. Tschudin,Patrick Reiser,David A. Broadway,Patrick Maletinsky,Nikolai Sinitsyn,Scott A. Crooker & Han Htoon
Nature MaterialsPublished:17 August 2023
DOI:https://doi.org/10.1038/s41563-023-01645-7

新しい量子デバイスが単一光子を生成し情報を暗号化する(New quantum device generates single photons and encodes information)

Abstract

Quantum light emitters capable of generating single photons with circular polarization and non-classical statistics could enable non-reciprocal single-photon devices and deterministic spin–photon interfaces for quantum networks. To date, the emission of such chiral quantum light relies on the application of intense external magnetic fields, electrical/optical injection of spin-polarized carriers/excitons or coupling with complex photonic metastructures. Here we report the creation of free-space chiral quantum light emitters via the nanoindentation of monolayer WSe2/NiPS3 heterostructures at zero external magnetic field. These quantum light emitters emit with a high degree of circular polarization (0.89) and single-photon purity (95%), independent of pump laser polarization. Scanning diamond nitrogen-vacancy microscopy and temperature-dependent magneto-photoluminescence studies reveal that the chiral quantum light emission arises from magnetic proximity interactions between localized excitons in the WSe2 monolayer and the out-of-plane magnetization of defects in the antiferromagnetic order of NiPS3, both of which are co-localized by strain fields associated with the nanoscale indentations.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました