2023-05-24 カリフォルニア大学サンディエゴ校(UCSD)
◆スクリップス海洋研究所とミュンヘン大学の地震学者チームは、スーパーコンピュータを使用して、地震間の関連性を特定し、これらの地震が複雑な断層形態と低い摩擦によって引き起こされたことを明らかにした。これにより、地震リスク評価や防災対策の向上に貢献することが期待される。
<関連情報>
- https://today.ucsd.edu/story/segment-jumping-ridgecrest-earthquakes-explored-in-new-study
- https://www.nature.com/articles/s41586-023-05985-x
2019年リッジクレストの破裂シーケンスのダイナミクス、相互作用、遅延について Dynamics, interactions and delays of the 2019 Ridgecrest rupture sequence
Taufiq Taufiqurrahman,Alice-Agnes Gabriel,Duo Li,Thomas Ulrich,Bo Li,Sara Carena,Alessandro Verdecchia & František Gallovič
Nature Published:24 May 2023
DOI:https://doi.org/10.1038/s41586-023-05985-x
Abstract
The observational difficulties and the complexity of earthquake physics have rendered seismic hazard assessment largely empirical. Despite increasingly high-quality geodetic, seismic and field observations, data-driven earthquake imaging yields stark differences and physics-based models explaining all observed dynamic complexities are elusive. Here we present data-assimilated three-dimensional dynamic rupture models of California’s biggest earthquakes in more than 20 years: the moment magnitude (Mw) 6.4 Searles Valley and Mw 7.1 Ridgecrest sequence, which ruptured multiple segments of a non-vertical quasi-orthogonal conjugate fault system1. Our models use supercomputing to find the link between the two earthquakes. We explain strong-motion, teleseismic, field mapping, high-rate global positioning system and space geodetic datasets with earthquake physics. We find that regional structure, ambient long- and short-term stress, and dynamic and static fault system interactions driven by overpressurized fluids and low dynamic friction are conjointly crucial to understand the dynamics and delays of the sequence. We demonstrate that a joint physics-based and data-driven approach can be used to determine the mechanics of complex fault systems and earthquake sequences when reconciling dense earthquake recordings, three-dimensional regional structure and stress models. We foresee that physics-based interpretation of big observational datasets will have a transformative impact on future geohazard mitigation.