1700応用理学一般

リンパ組織修復の定量的モデリング~免疫能低下の改善に向けた数理と実験のコラボレーション~ 1700応用理学一般

リンパ組織修復の定量的モデリング~免疫能低下の改善に向けた数理と実験のコラボレーション~

リンパ組織である「胸腺」が機能傷害を受けた後に修復する過程についての数理モデルを構築し、その解析により胸腺修復に重要な新たな機構を明らかにした。
有機分子で初めてスピン移行に成功~分子を利用した集積量子演算への第一歩~ 0403電子応用

有機分子で初めてスピン移行に成功~分子を利用した集積量子演算への第一歩~

磁石の性質を持つ有機分子に対しスピン移行を起こすことに初めて成功した。白金の表面にフタロシアニンを吸着させた細線がスピンホール磁気抵抗効果を示すことを見出し、白金から分子へのスピン移行が起きていることを確かめた。
暗い励起子から明るい励起子への変換機構を解明~カーボンナノチューブの発光効率向上への新指針~ 0403電子応用

暗い励起子から明るい励起子への変換機構を解明~カーボンナノチューブの発光効率向上への新指針~

カーボンナノチューブの発光で、暗い励起子から明るい励起子への変換効率を定量的に求めることに成功、変換効率は長いナノチューブほど高くなる。明るい励起子へ変換される速度は幾何構造に依存、暗い励起子の50%以上を明るい励起子に変換できる。
ad
放射光により原子の形を自在に変えることに成功~放射光による量子状態制御の応用~ 1700応用理学一般

放射光により原子の形を自在に変えることに成功~放射光による量子状態制御の応用~

アンジュレータという光源装置を二台用いて二つの放射光パルスを発生し、その時間差をアト秒の精度で精密に制御することにより、ヘリウム原子の二つの軌道を重ね合わせて、電子雲の向きや形を精密に操作することに成功した。
電子スピンを自在に操ることができる積層材料の開発に成功 0403電子応用

電子スピンを自在に操ることができる積層材料の開発に成功

電子スピンを使った情報処理に重要な、電子スピンの向きを揃える性能とスピンの向きを保つ性能のそれぞれに最も優れるホイスラー合金とグラフェンからなる積層材料の開発に成功した。
オンチップの量子センシング (Quantum sensing on a chip) 0403電子応用

オンチップの量子センシング (Quantum sensing on a chip)

標準的な相補型金属酸化膜半導体(CMOS)技術を利用して、ダイヤモンド窒素・空孔中心(NV センター)ベースの量子センサーをシリコンチップ上に初めて作製。
生きた細胞で機能する生体適合性の微細ナノレーザー 0110情報・精密機器

生きた細胞で機能する生体適合性の微細ナノレーザー

(Tiny, biocompatible nanolaser could function inside living tissues)ノースウェスタン大学とコロンビア大学が、生きた細胞を損傷せずに機能する微細ナノレーザーを開発。
トリウム原子核の精密レーザー分光実現へ重要な一歩 1700応用理学一般

トリウム原子核の精密レーザー分光実現へ重要な一歩

トリウム229(229Th:原子番号90、質量数229)原子核の準安定状態である「アイソマー状態」のエネルギーを決定した。
分子ナノシステムの設計から筋収縮の原理を解明~心筋症における精密医療への応用に期待~ 1700応用理学一般

分子ナノシステムの設計から筋収縮の原理を解明~心筋症における精密医療への応用に期待~

筋収縮の機能単位であるサルコメア構造の一部となる分子ナノシステムを設計し、収縮中のモーター分子の動態を世界最高の解像度で直視することに成功した。
1兆分の3秒で進む分子の構造変化を追跡~結合生成に伴い金原子同士が折れ曲がった状態から直線形へ 0500化学一般

1兆分の3秒で進む分子の構造変化を追跡~結合生成に伴い金原子同士が折れ曲がった状態から直線形へ

10フェムト秒(1フェムト秒は1,000兆分の1秒)の光パルスを用いた独自の計測手法により、瞬間的な化学結合の生成に伴って3ピコ秒(1ピコ秒は1兆分の1秒)で進む分子の構造変化を直接追跡することに成功した。
光化学系II-集光装置超複合体の立体構造を決定〜分子量166万の巨大集光マシンの全貌が明らかに 1700応用理学一般

光化学系II-集光装置超複合体の立体構造を決定〜分子量166万の巨大集光マシンの全貌が明らかに

光化学系IIとこれに光エネルギーを与える集光装置の全体(超複合体)を緑藻から取り出して、その立体構造をクライオ電子顕微鏡にて決定した。巨大集光マシンによって集められた光エネルギーの流れが解明された。
光学顕微鏡によるマルチカラー高速高精度1分子観察を実現 0110情報・精密機器

光学顕微鏡によるマルチカラー高速高精度1分子観察を実現

金、銀、金銀合金ナノ粒子を用いて、光学顕微鏡によるマルチカラー高速高精度生体1分子イメージングを実現し、複数の生体1分子の挙動を同時かつ高速に追跡可能にした。
ad
タイトルとURLをコピーしました