1700応用理学一般

”自然界”を効率的に学習する方法を開発~量子系ハミルトニアンの効率的な学習に必要なデータ数は?~ 1700応用理学一般

”自然界”を効率的に学習する方法を開発~量子系ハミルトニアンの効率的な学習に必要なデータ数は?~

量子力学に従う多粒子系(量子多体系)を特徴付けるエネルギー関数、すなわちハミルトニアンを少ないサンプルデータ数で効率的に学習する新手法を開発した。ハミルトニアン学習におけるデータサンプル数の必要十分条件は、量子多体系の粒子数Nに対してNα(1/2 < α < 3)であることを明らかにした。
キラル分子の高感度・簡便な構造解析法を創出 ~創薬や材料開発を加速~ 1700応用理学一般

キラル分子の高感度・簡便な構造解析法を創出 ~創薬や材料開発を加速~

シリコンでできたナノ構造を持つプレート「シリコンナノディスクアレイ」による全誘電体のキラル場増強ROAの理論を構築し、それをROA分光計測基板として用いることで、従来のROA分光法と比べて、光電場とキラル分子の間で100倍強い相互作用を実験的に実証した。
スピン流を超簡単にon/offスイッチング 〜結晶を曲げるだけでトポロジカル相を自在に制御〜 1700応用理学一般

スピン流を超簡単にon/offスイッチング 〜結晶を曲げるだけでトポロジカル相を自在に制御〜

擬一次元TaSe3(Ta:タンタル、Se:セレン)がスピン流を生成するトポロジカル絶縁体状態にあることを示すと共に、その結晶を少し歪ませるだけで、通常の絶縁体へと容易に変化させられることを見出した。
ad
光の磁場成分を増強するナノアンテナで 未開拓な光学遷移の増強に成功 1700応用理学一般

光の磁場成分を増強するナノアンテナで 未開拓な光学遷移の増強に成功

磁気双極子遷移を大幅に増強する誘電体ナノアンテナを開発し、物質の光励起・緩和過程の新しい制御手法を実証した。独自に開発したシリコンナノ粒子について、①直径を数ナノメートルの精度で制御する技術と②磁気双極子発光体を表面に付加する技術を開発し、10倍以上に増強された磁気双極子遷移発光を実現した。
ついに撮影成功 ! 「吐く息」「飛沫」「マスクの効果」がここまで見える ! 1700応用理学一般

ついに撮影成功 ! 「吐く息」「飛沫」「マスクの効果」がここまで見える !

従来、シミュレーションで予測することが多かった息の広がりを可視化することに成功した 。二酸化炭素が吸収する赤外線に着目した特別なカメラを設計し、映像の撮影に成功した。
音波による磁石の向きの制御に世界で初めて成功 1700応用理学一般

音波による磁石の向きの制御に世界で初めて成功

表面弾性波から電子のスピンへの角運動量の移動を利用することにより、音波による磁石の向きの制御に世界で初めて成功した。表面弾性波を用いたデバイスは、高精度なバンドパスフィルターとして携帯電話などに内蔵されており、記録素子として広く使われる磁性との融合によりデバイスの高度化が期待できる。
ガラスのドミノ倒し的結晶化 1700応用理学一般

ガラスのドミノ倒し的結晶化

分子の動きが凍結されるような低温においても、力学的な不安定性に駆動され、拡散を伴うことなく結晶化がドミノ倒し的に進行する新たなメカニズムを発見した。
離れていてもつながった電子の軌道運動の実証 ~ワイル粒子による特異な非局所量子性を観測~ 1700応用理学一般

離れていてもつながった電子の軌道運動の実証 ~ワイル粒子による特異な非局所量子性を観測~

ワイル粒子の存在により電子の軌道運動が2次元から3次元へと拡張できることが理論的に予測されてきたが、これまで観測できていなかった。トポロジカル半金属のトランジスターデバイスを測定することで、空間的に離れた表面の電子状態がワイル粒子により結合し量子化された3次元運動を示すことを観測した。
Thoulessポンプにおける乱れの効果を検証~トポロジカル量子現象と乱れの競合と協奏~ 1700応用理学一般

Thoulessポンプにおける乱れの効果を検証~トポロジカル量子現象と乱れの競合と協奏~

Thoulessポンプと呼ばれるトポロジカル量子現象における「乱れ」の効果について明らかにした。
磁石のカイラリティを利用した自然旋光性の電場制御に成功 1700応用理学一般

磁石のカイラリティを利用した自然旋光性の電場制御に成功

らせん型に配列したスピンを用いることでテラヘルツ帯に大きな自然旋光性が生じることを発見し、電圧による自然旋光性の制御に成功した。
超広視野多天体分光器 PFS の光ファイバーと分光器で夜空の観測に成功 1700応用理学一般

超広視野多天体分光器 PFS の光ファイバーと分光器で夜空の観測に成功

すばる望遠鏡に搭載される超広視野多天体分光器 PFS (Prime Focus Spectrograph) の一部であるファイバーケーブルユニットと分光器を用いた試験観測が 2021年2月に実施され、夜空のスペクトルを取得することに成功した
トポロジカル反強磁性金属の超高速スピン反転を実証 ~テラヘルツ電子デバイスの実現に道~ 1700応用理学一般

トポロジカル反強磁性金属の超高速スピン反転を実証 ~テラヘルツ電子デバイスの実現に道~

物質中の電子がもつ磁石としての性質、すなわちスピンの反転速度が反強磁性金属では10ピコ秒と極めて速いことを実証した。
ad
タイトルとURLをコピーしました