AIが「理想の主翼」を自律設計、計算コスト1/10で大型旅客機主翼の最適形状を導出 ~水素・アンモニア燃料機など脱炭素機の開発加速に期待~

2026-02-20 九州大学

東北大学流体科学研究所の阿部圭晃准教授らは、多目的ベイズ最適化(MBO)を用いて、CFRP製大型旅客機主翼の最適設計を従来の約10分の1の計算回数で実現した。空力による翼のたわみと材料破壊条件を同時に評価し、AIが強度不足部を補強しつつ不要部分を削減する設計を自律反復。空気抵抗と重量を最小化する形状群を導出した。下面パネルは材料高度化で大幅軽量化可能である一方、後ろ桁重量は翼長の影響が支配的であること、さらに製造時の炭素繊維のズレが性能に与える影響も定量化。水素・アンモニア燃料機など脱炭素航空機の設計加速に貢献する成果で、Composite Structures誌に掲載された。

AIが「理想の主翼」を自律設計、計算コスト1/10で大型旅客機主翼の最適形状を導出 ~水素・アンモニア燃料機など脱炭素機の開発加速に期待~
図1. AI手法の1つであるMBOにより計算コスト1/10で大型旅客機主翼の最適形状を導出

<関連情報>

様々な炭素繊維を用いた複合材航空機翼の多目的ベイズ最適化 Multi-objective Bayesian optimization of composite aircraft wings using various carbon fibers

Yajun Liu, Yoshiaki Abe, Ryosuke Kano, Yuki Yatsu, Katsumi Nakamura, Koji Shimoyama, Tomonaga Okabe, Shigeru Obayashi
Composite Structures  Available online: 5 February 2026
DOI:https://doi.org/10.1016/j.compstruct.2026.120105

Highlights

  • First comprehensive multi-objective Bayesian optimization of composite wings with varied fibers.
  • Bayesian optimization converges faster and yields a more diverse Pareto front than NSGA-II.
  • Two Pareto-front regions reveal distinct trade-offs between sweep angle and wingspan.
  • Stiffer, stronger fibers reduce wing weight, though components depend on planform.
  • Reduced compressive strength from fiber misalignment strongly affects wing weight and failure.

Abstract

This study presents the first application of multi-objective Bayesian optimization (MBO) for designing carbon fiber reinforced plastic (CFRP) aircraft wing planforms. The design process integrates two-way aeroelastic coupling and structural sizing analyses. Compared to the conventional NSGA-II genetic algorithm, MBO generated a more diverse and advanced Pareto front using only one-tenth of the function evaluations under the given problem and optimization parameters. The resultant Pareto front revealed two distinct design regions: one characterized by a constant minimum wingspan and varying sweep angle, and the other by a constant maximum sweep with increasing wingspan, offering new insight into aerodynamic–structural trade-offs in composite wing design. Among three carbon fibers (T700S, T800S, and T1100G), higher-stiffness fibers consistently reduced total wing weight, while component-level sensitivity differed with geometry. The result first reports the effects of fiber properties on comprehensive Pareto-optimal solutions using global optimization via the MBO approach. Furthermore, the reduction in compressive strength was evaluated by integrating the inevitable fiber misalignment angle during manufacturing into the micromechanics (Budiansky–Fleck) model, and the wing weight was estimated accordingly. Such a misalignment significantly affected the weight and failure modes of the upper skin, especially for the high-aspect-ratio wing design.

0301機体システム
ad
ad
Follow
ad
タイトルとURLをコピーしました