単一分子の“歌声”を検出する新技術 (Hearing a Molecule’s Solo Performance)

2026-02-19 カリフォルニア大学サンディエゴ校(UCSD)

米国カリフォルニア大学サンディエゴ校の研究チームは、単一分子の振動「声」を直接観測する技術を開発した。この技術では、赤外線励起と走査トンネル顕微鏡(STM)を統合した「赤外線統合STM(IRiSTM)」を用いることで、これまで集団でしか観測できなかった分子振動のスペクトルを、1つの分子単位で読み取ることに成功した。 分子は化学結合ごとに固有の振動周波数を持つが、従来の赤外分光法は巨大な分子集団の平均的な信号しか捉えられなかった。新しい方法は、金属先端と表面間での電子トンネル効果を利用して単一分子を極めて高感度に観測し、個々の振動モードとナノ環境との結合を測定できる。これにより、単一分子レベルで振動エネルギーと動的挙動の関係が理解でき、反応制御やナノスケール化学の新たな道が開かれる可能性がある。 研究成果は Science 誌に掲載された。

単一分子の“歌声”を検出する新技術 (Hearing a Molecule’s Solo Performance)

<関連情報>

走査トンネル顕微鏡を用いた単分子赤外分光法 Single-molecule infrared spectroscopy with scanning tunneling microscopy Science  Published:19 Feb 2026

Editor’s summary

Molecular vibrations play a crucial role in chemistry, and achieving vibrational spectroscopy at the single-molecule level has been a long-standing goal. This is especially true in the field of nanoscience, where the ability to manipulate chemical transformations with bond-level specificity is becoming increasingly important. By integrating frequency-tunable infrared (IR) excitation with scanning tunneling microscopy (STM), Liang et al. developed a broadband IR-STM platform able to resolve a series of fundamental vibrational modes in a single pyrrolidine molecule on the Cu(100) surface. They observed higher-order overtone and combination modes, as confirmed through isotopic substitution. These results demonstrate that IR-STM can provide a more comprehensive molecular vibrational fingerprint compared with previously proposed techniques for vibrational characterization at the single-molecule level. —Yury Suleymanov

Abstract

Probing vibrations at the single-molecule level is essential for achieving bond-specific chemical control in realistic heterogeneous environments. Here, we introduce a new measurement scheme that integrates frequency-tunable infrared excitation with scanning tunneling microscopy to characterize vibration-mediated nuclear motions of single molecules. We first validated the technique by monitoring the infrared-induced rotation of the ethynyl radical and then applied it to mapping pyrrolidine’s conformational dynamics. The resulting broadband spectra captured fundamental vibrational modes together with rich overtone and combination bands inaccessible by conventional methods, which we confirmed with isotopic substitutions. Density functional theory calculations showed that delocalized modes coupled with pyrrolidine ring puckering drive the structural transition, revealing altered selection rules compared with traditional infrared spectroscopy. This new experimental platform enables molecular vibrations and transformations to be probed with atomic precision.

0110情報・精密機器
ad
ad
Follow
ad
タイトルとURLをコピーしました