エアロゾル遠隔計測のためのハイブリッドAI‐物理手法を開発 (Researchers Develop Hybrid AI-Physics Method for Accurate Aerosol Remote Sensing)

2026-01-27 中国科学院(CAS)

中国科学院傘下のAerospace Information Research Instituteの研究チームは、深層学習と放射伝達物理モデルを統合したハイブリッド手法を開発し、衛星による大気エアロゾル観測の精度向上を実現した。高分五号02星(Gaofen-5(02))搭載のDPC(方向性偏光カメラ)の多角度・偏光データを対象に、カプセルネットワークを用いて光学的厚さや粒径情報を安定的に推定する。物理一貫性を保ちつつ高次元データを処理でき、従来法や純粋AIの弱点を克服した。地上観測との比較で高い相関を示し、霧・砂塵の識別や準リアルタイム監視に有効であることを確認した。成果はJournal of Remote Sensingに掲載された。

<関連情報>

DPC/Gaofen-5(02)衛星多角度偏波観測によるエアロゾル抽出のためのカプセルネットワークモデル A Capsule Network Model for Aerosol Retrieval from DPC/Gaofen-5(02) Satellite Multi-Angle Polarimetric Observation

Haoran Gu, Zhengqiang Li, Luo Zhang, Cheng Chen, […] , and Yao Qian
Journal of Remote Sensing  Published:9 Dec 2025
DOI:https://doi.org/10.34133/remotesensing.1008

エアロゾル遠隔計測のためのハイブリッドAI‐物理手法を開発 (Researchers Develop Hybrid AI-Physics Method for Accurate Aerosol Remote Sensing)

Abstract

Satellite multi-angle polarimetric (MAP) observations provide crucial insights into the microphysical and optical properties of atmospheric aerosols. Recent advancements in multi-angle, multispectral, and polarized satellite observations have increased data content and complexity. While traditional methods like look-up tables and optimal estimation face challenges in fully utilizing these advanced datasets, deep learning approaches offer substantial advantages. However, deep learning models also have limitations, particularly regarding physical interpretability and the efficiency of processing high-dimensional observational data. To address these challenges, we propose MAP_CapsNet, a deep learning algorithm based on Capsule Networks (CapsNets) for aerosol multi-parameter retrieval. This algorithm combines the multi-dimensional modeling capabilities of CapsNets with vector radiative transfer models to retrieve aerosol optical and microphysical parameters. We applied it to MAP measurements from the Directional Polarimetric Camera (DPC) onboard the Gaofen-5(02) satellite to retrieve different aerosol parameters over China in 2022. The results were validated against Aerosol Robotic Network and Sun/sky-radiometer Observation Network data. The correlation coefficients (R) for aerosol optical depth and fine mode fraction exceed 0.935 and 0.782, respectively. The single scattering albedo also showed a moderate correlation (R = 0.691). Compared with Moderate Resolution Imaging Spectroradiometer and Visible Infrared Imaging Radiometer Suite products, the DPC exhibited good spatial consistency and an enhanced ability to characterize aerosol properties due to higher spatial resolution and MAP capability. These findings highlight the DPC instrument’s potential for high-resolution, real-time monitoring of dust and haze pollution events.

1902環境測定
ad
ad
Follow
ad
タイトルとURLをコピーしました