新開発極微非線形分光法で観る1億分の1メートルの分子集団の世界~不均一な材料表面における分子メカニズムの解明へ~

2026-01-19 分子科学研究所

分子科学研究所の杉本敏樹准教授らは、走査トンネル顕微鏡(STM)の金属ナノ探針先端にフェムト秒パルスレーザーを照射し、近接場で和周波発生(SFG)信号を増強することで、光の回折限界を超えるナノ領域(約10~30nm)ごとに分子の振動スペクトルを取得できる新しい極微非線形分光法を開発した。従来はマイクロメートル平均に埋もれていた不均一表面の局所情報を、ドメイン単位で分光学的に識別でき、さらに理論モデルと高精度計算を組み合わせてスペクトル歪みを解析することで、探針直下の少数分子が表面に対して上向き/下向きのどちらを向くかという「絶対配向」まで読み取れることを実証した。材料表面で分子配向が支配する触媒反応や界面現象の微視的機構解明に資する手法として期待される。

新開発極微非線形分光法で観る1億分の1メートルの分子集団の世界~不均一な材料表面における分子メカニズムの解明へ~

<関連情報>

回折限界を突破する探針増強和周波振動ナノ分光 Tip-Enhanced Sum-Frequency Vibrational Nanoscopy beyond the Diffraction Limit

Shota Takahashi,Koichi Kumagai,Atsunori Sakurai,Tatsuto Mochizuki,Tomonori Hirano,Akihiro Morita,and Toshiki Sugimoto
The Journal of Physical Chemistry C  Published: December 11, 2025
DOI:https://doi.org/10.1021/acs.jpcc.5c05411

Abstract

Sum-frequency generation (SFG) is a powerful second-order nonlinear spectroscopic technique that provides detailed insights into molecular structures and absolute orientations at surfaces and interfaces. However, conventional SFG based on far-field schemes suffers from the diffraction limit of light, which inherently averages spectroscopic information over micrometer-scale regions and obscures nanoscale structural inhomogeneity. Here, we overcome this fundamental limitation by leveraging a highly confined optical near field within a tip–substrate nanogap of a scanning tunneling microscope (STM), pushing the spatial resolution of SFG down to ∼10 nm, a nearly two-orders-of-magnitude improvement over conventional far-field SFG. By capturing tip-enhanced SFG (TE-SFG) spectra concurrently with STM scanning, we demonstrate the capability to resolve nanoscale variation in molecular adsorption structures across distinct interfacial domains. To rigorously interpret the observed TE-SFG spectra, we newly developed a comprehensive theoretical framework for the TE-SFG process and confirm via numerical simulations that the TE-SFG response under our current experimental conditions is dominantly governed by the dipole-field interactions, with negligible contributions from higher-order multipole effects. The dominance of the dipole mechanism ensures that the observed TE-SFG spectra faithfully reflect not only nanoscale interfacial structural features but also absolute up/down molecular orientations. This study presents the first experimental realization of second-order nonlinear vibrational SFG nanoscopy beyond the diffraction limit, opening a new avenue for nanoscale domain-specific investigation of molecular structures and dynamics within inhomogeneous interfacial molecular systems beyond the conventional far-field SFG and STM imaging.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました