ハニカム格子構造が量子材料開発を加速(Honeycomb lattice sweetens quantum materials development)

2026-01-16 オークリッジ国立研究所(ORNL)

米国オークリッジ国立研究所(ORNL)の研究チームは、ハニカム格子構造を活用することで量子材料の設計と性能制御が大きく前進することを示した。研究では、原子が蜂の巣状に配列した結晶構造が、電子のスピンや軌道相互作用を精密に制御できることに着目し、新たな量子特性の発現を実証した。この格子構造により、量子スピン液体やトポロジカル状態といった次世代量子現象の安定化が促進され、材料設計の自由度が高まることが明らかになった。さらに、中性子散乱や計算科学を組み合わせることで、物性発現のメカニズムを詳細に解析している。これらの成果は、量子コンピューティングや高効率エレクトロニクス、スピントロニクス材料の開発を加速させる基盤技術となる可能性があり、量子材料研究の新たな指針を示すものといえる。

ハニカム格子構造が量子材料開発を加速(Honeycomb lattice sweetens quantum materials development)
In a honeycomb lattice of potassium cobalt arsenate, cobalt spins (red and blue arrows) couple and align. Potassium, arsenic and oxygen are removed to highlight the magnetic cobalt atoms. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

<関連情報>

準安定コバルトハニカムKCoAsO4の合成と特性評価 Synthesis and Characterization of Metastable Cobalt Honeycomb KCoAsO4

Lucas A. Pressley,Colin L. Sarkis,Justin Felder,Clarina R. Dela Cruz,Raymond R. Unocic,Zheng Gai,Jeffrey D. Einkauf,Saurabh P. Pethe,Mariappan P. Paranthaman,Tom Berlijn,John W. Villanova,Satoshi Okamoto,Michael A. McGuire,D. Alan Tennant,Stephen E. Nagler,and Craig A. Bridges
Inorganic Chemistry  Published: June 27, 2025
DOI:https://doi.org/10.1021/acs.inorgchem.5c00932

Abstract

The Kitaev model has served as a long-sought-after target in the realization of a quantum spin liquid that could host Majorana Fermions. Such non-Abelian anyons could revolutionize quantum computing if properly implemented to overcome decoherence. A 3d7 electronic configuration, like Co2+, has been explored by theory and experimental work to design Kitaev materials. Here, we report the synthesis of a new cobaltate honeycomb material KCoAsO4. The compound is synthesized through a low-temperature solution route and crystallized in space group R¯3 with lattice parameters a = 5.0394(1) and c = 28.6790(1) as determined by neutron powder diffraction. The crystal structure follows motifs similar to those of the honeycomb compound BaCo2(AsO4)2 but presents differing magnetic behavior. Magnetization/heat capacity measurements on the powder show antiferromagnetic transition TN = 14 K. Two lower-temperature transitions are present in susceptibility at low field that resemble spin reorientations. Magnetization data as a function of field have curvature indicative of metamagnetic behavior below the magnetic ordering temperature, with the magnetic ordering suppressed upon application of a higher magnetic field. Computational studies suggest the presence of a weak nearest-neighbor Kitaev term, K1, consistent with related honeycomb cobaltates. Together, the data suggest that this material should present a new platform for developing Kitaev quantum spin liquids.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました