「バタフライ効果」を制御する新原理~カオスを逆手に取る「双対性原理」の提唱~

2026-01-15 理化学研究所

理化学研究所は、決定論的カオスの予測限界を逆手に取って制御する新理論「双対性原理」を提唱した。気象予測で用いられるデータ同化とカオス制御が数学的に双対関係にあることを示し、カオスを抑え込むのではなく、高い感度を利用して最小限の介入で自然現象を望ましい目標軌道へ同期させる枠組みを構築した。制御シミュレーション実験(CSE)を一般的に定式化し、予測不能性と制御可能性のパラドックスに理論的解答を与えた点が成果である。極端気象の防災・減災研究をはじめ、生態系や経済学など複雑系全般への応用が期待される。本成果は科学誌Nonlinear Dynamicsに掲載された。

<関連情報>

カオスシステムの双対性原理:データ同化から効率的な制御まで A duality principle for chaotic systems: from data assimilation to efficient control

Takemasa Miyoshi
Nonlinear Dynamics  Published:14 January 2026
DOI:https://doi.org/10.1007/s11071-025-12021-2

「バタフライ効果」を制御する新原理~カオスを逆手に取る「双対性原理」の提唱~

Abstract

E. N. Lorenz discovered the highly sensitive nature of a chaotic dynamical system and conveyed it vividly by his famous “butterfly effect”; namely, a flap of a butterfly could cause a storm a few days later somewhere far away. Extreme weather like intense storms tends to be more chaotic and harder to predict, with increasing threat due to climate change. This motivates us to ask if we could possibly modify extreme weather in a favorable manner by taking advantage of its strong chaoticity. Here, the problem is that the causality from a flap of a butterfly to a storm formation is not trivial due to the limited predictability. Due to chaos, a small perturbation grows exponentially and leads to a different future state, but the difference becomes large enough only after the predictable range. This paper addresses this apparent paradox by presenting the first rigorous mathematical formalization of the Control Simulation Experiment (CSE) framework, an extension of the data assimilation (DA) paradigm. We then propose a duality principle based on chaos synchronization: while DA uses observations to synchronize a model to nature’s trajectory, we argue that control uses interventions to synchronize nature to a chosen target trajectory. The feasibility of this control rests on the key insight that these target trajectories can be selected to have distinct dynamical properties from the original system, reframing the challenge from taming a fully chaotic system to maintaining synchronization with a more manageable path.

1504数理・情報
ad
ad
Follow
ad
タイトルとURLをコピーしました