Nature誌に掲載:急速充電が可能な「熱電池」を開発(ZJU team unveils a fast-charging “thermal battery,” published in Nature)

2026-01-14 浙江大学(ZJU)

浙江大学エネルギー工学院の樊立武准教授率いる研究チームは、熱を蓄える「熱電池」において、高蓄熱量と高速充電を両立させる新機構を開発し、2026年1月にNature誌で発表した。相変化材料(PCM)は高い蓄熱密度を持つ一方、熱伝導性が低く充電が遅いという課題があった。本研究では、側壁を極めて滑りやすくする「滑り促進近接接触融解(sCCM)」を導入し、PCMが壁に付着せず加熱面と密着する設計を実現した。その結果、従来材料を用いながら高いエネルギー密度を維持したまま、極めて高い充電速度を達成し、産業廃熱回収や太陽熱利用などへの応用が期待される。

Nature誌に掲載:急速充電が可能な「熱電池」を開発(ZJU team unveils a fast-charging “thermal battery,” published in Nature)
Fast charging of phase-change thermal batteries

<関連情報>

パルス加熱とスリップが相変化熱電池の充電を強化 Pulse heating and slip enhance charging of phase-change thermal batteries

Zi-Rui Li  (李梓瑞),Nan Hu  (胡楠),Zhen-Bo Wang  (汪振波),Guo-Tao Fu  (傅国涛),Yang-Yan Lai  (赖洋琰),Yue-Fei Wu  (武岳飞),Jia-Jie Jiang  (蒋佳杰),Xiao-Rong Wang  (王晓容),Shuang-Shuang Ni  (倪爽爽),Yu-Min Ye  (叶羽敏),Zi-Tao Yu  (俞自涛),Xiang Gao  (高翔),Howard A. Stone & Li-Wu Fan  (范利武)
Nature  Published:07 January 2026
DOI:https://doi.org/10.1038/s41586-025-09877-0

Abstract

Phase-change thermal batteries for renewable energy storage and waste heat recovery demand high energy density and fast charging1,2,3,4,5, which are mutually exclusive because phase-change materials (PCMs) with high melting enthalpy are usually poor heat conductors6,7,8. The charging rate can be improved by making composite phase-change materials (CPCMs) with increased thermal conductivity9 and/or by exerting an external force to realize close-contact melting (CCM)10,11,12. However, these methods inevitably result in energy density losses and/or extra energy consumption. Here we report a strategy to boost the charging rates without sacrificing energy density, based on a rational design of a composite coating that enables slip-enhanced close-contact melting (sCCM) inside sealed thermal batteries. Using organic PCMs, we demonstrate a record-high power density of 1,100 ± 2% kW m−3 in a prototype. Our coating design integrates a pulse-heated (PH) layer that premelts the PCM to initiate CCM, together with a liquid-like slip surface that ensures unimpeded sinking of the remaining solid and sustains the sCCM mode throughout charging. We develop a model to explain how the slip surface enhances the charging rate. With high cycling life, adaptability and scalability, this strategy is generalizable to diverse PCMs, enabling high-performance thermal energy storage over a wide range of temperatures.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました