スマート複合材料のブレークスルー:研究者の長年の探求が成果に(A researcher’s long quest leads to a smart composite breakthrough)

2025-012-23 バージニア工科大学(Virginia Tech)

バージニア工科大学の材料科学・工学准教授 Hang Yu 率いる研究チームは、長年の研究の末に 大量生産可能なスマート複合材料 の開発に成功した。これは特定の形状に戻る「形状記憶特性」を持つ材料であり、通常の形状記憶合金・ポリマーとは異なり、3Dプリントを用いた大量製造が可能な点が大きな特徴である。研究では最先端の製造技術や微視的構造設計を組み合わせ、複合材料内部の相互作用を制御することにより、高い形状記憶性能と機械的強度の両立に成功した。このブレークスルーは、航空宇宙、医療機器、ロボティクスなど スマート材料の応用領域を大きく拡張する可能性がある。論文は査読付きジャーナル Materials Science and Engineering R Reports に掲載されており、従来の複合材料研究の方向性に新たな示唆を与える成果とされている。

A professor in a blue suit jacket stands near an additive friction stir deposition machine in his lab.

Hang Yu, associate professor of materials science and engineering, with a miniaturized additive friction stir deposition machine used in his advanced manufacturing research. Photo by Peter Means for Virginia Tech.

<関連情報>

形状記憶セラミック強化複合材料の固体積層造形 Solid-state additive manufacturing of shape-memory ceramic reinforced composites

Donald J. Erb, Nikhil Gotawala, Hang Z. Yu
Materials Science and Engineering: R: Reports  Available online: 22 December 2025
DOI:https://doi.org/10.1016/j.mser.2025.101152

Highlights

  • Additive friction stir deposition of metal matrix-SMC composites is successful.
  • The printed composites are fully dense with particle dispersion and size reduction.
  • Metal-ceramic interfaces formed during printing dictate thermal transformation.
  • Stress-induced transformation is achieved in bulk composites for the first time.
  • Load transfer and strain hardening of matrix govern stress-induced transformation.

Abstract

We report a solid-state additive manufacturing route for producing shape-memory ceramic (Zr0.88Ce0.12O2) reinforced metal matrix composites. Using additive friction stir deposition, we implement two feedstock engineering strategies: (i) pre-mixing of powders using a Cu matrix and (ii) hole-pattern drilling using an Al-Mg-Si matrix, where the specific matrix materials are chosen for their distinct shear flow behaviors. The process yields fully dense composites with uniform particle dispersion (20 vol%) and dynamically recrystallized metal matrices. The severe thermomechanical processing conditions also reduce the ceramic particle size, resulting in unique composite microstructures unattainable by alternative processing routes. The as-printed composites can withstand high compressive loads without cracking and retain functionality enabled by thermally and mechanically triggered martensitic transformations. Notably, for the first time, stress-induced martensitic transformation (tetragonal to monoclinic) is observed in bulk-scale composites—but it is only present in the Cu matrix composite, not the Al-Mg-Si counterpart. Micromechanics modeling attributes this contrast to differences in the load transfer and strain hardening capabilities. Complementary to global transformation characterization, Raman mapping reveals that transformation typically initiates at the particle-matrix interface. Together, these results establish a potential pathway for scalable manufacturing of multi-functional metal–shape memory ceramic composites with tunable microstructures and transformation responses.

0700金属一般
ad
ad
Follow
ad
タイトルとURLをコピーしました