宇宙で生命の原子が拡散する仕組みを再定義(Stardust study resets how life’s atoms spread through space)

2025-12-22 チャルマース工科大学

スウェーデン・チャルマース工科大学の研究チームは、赤色巨星が生命に不可欠な元素を宇宙空間へ拡散する仕組みについて、従来説を見直す新たな知見を示した。研究では、アルマ望遠鏡(ALMA)を用いて赤色巨星R Doradus周辺のスターダストを高精度観測した。その結果、塵の粒子は想定よりはるかに小さく、星光の放射圧だけでは恒星風を十分に駆動できないことが判明した。これは、炭素や酸素などの元素が「塵が光に押されて宇宙へ放出される」という従来モデルの修正を迫るものである。研究チームは、星の対流運動や脈動、突発的な塵生成など、複数の物理過程が組み合わさって元素拡散が起こる可能性を指摘した。本成果は、生命の材料がどのように銀河全体へ行き渡るのかを理解する上で重要な一歩となる。

宇宙で生命の原子が拡散する仕組みを再定義(Stardust study resets how life’s atoms spread through space)
Starlight and stardust are not enough to drive the powerful winds of giant stars, transporting the building blocks of life through our galaxy. That’s the conclusion of a new study from Chalmers University of Technology, Sweden, of red giant star R Doradus. The result overturns a long-held idea about how the atoms needed for life are spread.

<関連情報>

漸近巨星分枝星Rドラダスの拡張大気と内層の経験的観察 II. 放射伝達モデルによるダスト特性の制約 An empirical view of the extended atmosphere and inner envelope of the asymptotic giant branch star R Doradus II. Constraining the dust properties with radiative transfer modelling

Thiebaut Schirmer, Theo Khouri, Wouter Vlemmings, Gunnar Nyman, Matthias Maercker, Ramlal Unnikrishnan, Behzad Bojnordi Arbab, Kirsten K. Knudsen and Susanne Aalto
Astronomy & Astrophysics  Published:27 November 2025
DOI:https://doi.org/10.1051/0004-6361/202556884

Abstract

Context. Mass loss in oxygen-rich asymptotic giant branch (AGB) stars remains a longstanding puzzle, as the dust species detected around these stars appear too transparent to drive winds through the absorption of radiation alone. The current paradigm consists of outflows driven by photon scattering and requires relatively large grains (∼0.3 μm). Whether the necessary number of grains with the required scattering properties exist around AGB stars remains to be determined empirically.

Aims. We test whether the dust grains observed around the oxygen-rich AGB star R Doradus can drive its stellar wind by combining, for the first time, polarimetric constraints with elemental abundance limits and force balance calculations. We examine Fe-free silicates (MgSiO3), aluminium oxide (Al2O3), and Fe-bearing silicates (MgFeSiO4) to determine whether any dust species can generate sufficient radiative pressure under physically realistic conditions.

Methods. We analysed high-angular-resolution polarimetric observations obtained with SPHERE/ZIMPOL at the Very Large Telescope (VLT) and modelled the circumstellar dust using the radiative transfer code RADMC-3D. Dust optical properties were computed using Optool for both Mie and the distribution of hollow spheres (DHS) scattering theories. By systematically exploring a six-dimensional parameter space, we derived constraints on dust grain sizes, density profiles, and wavelength-dependent stellar radii. For models that successfully fit the observations, we analysed the results taking into consideration recent models for the gas density distribution around R Dor, and applied a multi-criteria zone analysis incorporating gas-depletion constraints and radiation pressure thresholds to assess dust-driven wind viability.

Results. We find sub-micron MgSiO3 and Al2O3 grains (up to 0.1 μm) regardless of scattering theory considered, and a two-layer dust envelope with steep density profiles (r−3.4 to r−4.1). Despite matching observed scattered-light patterns, these grains generate insufficient radiative force under physically realistic gas-to-dust mass ratios, even when assuming complete elemental depletion. Silicates containing Fe could theoretically provide adequate force, but would sublimate in critical acceleration regions and require implausibly high silicon-depletion levels.

Conclusions. Our findings for R Doradus show insufficient radiation pressure from scattering on grains, suggesting that dust alone cannot drive the wind in this star and that additional mechanisms may be required.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました