マイクロプラスチックを摂食したマハゼの健全性を評価~自然と実験データをつなぐ新手法で無影響を可視化~

2025-12-10 理化学研究所

理化学研究所らは、河口域に生息するマハゼに自然界と同程度の濃度のポリエチレン製マイクロプラスチックを含む餌を与え、筋肉中代謝プロファイルをNMRで解析した。さらに、日本各地の河口から採取した約1,000個体分のマハゼ代謝データと統合し、UMAPやランダムフォレスト、ベイジアンネットワークなどの情報科学的手法で比較した。その結果、現在報告されている平均的な環境汚染レベルでのマイクロプラスチック暴露は、マハゼの代謝を自然界の変動範囲を超えて変化させるほど大きくない可能性が示された。この「自然の代謝空間」に実験データを位置付けて評価する新手法は、マイクロプラスチックの影響を過度に不安視も軽視もせず、環境リスクを科学的・定量的に判断する枠組みとして、循環型社会やSDGsに沿った環境管理への応用が期待される。

マイクロプラスチックを摂食したマハゼの健全性を評価~自然と実験データをつなぐ新手法で無影響を可視化~
本研究の概要

<関連情報>

実験室とフィールドのデータを統合して、実験的なマイクロプラスチック曝露がAcanthogobius flavimausに与える影響を評価する Integrating laboratory and field data to evaluate the effects of experimental microplastic exposure on Acanthogobius flavimaus

Hideaki Shima, Itta Matsunaga, Jun Kikuchi
Science of The Total Environment  Available online 5 December 2025
DOI:https://doi.org/10.1016/j.scitotenv.2025.180972

Highlights

  • Laboratory and field NMR metabolomics data were integrated via embedding.
  • Microplastic ingestion caused no clear metabolic changes in goby muscle.
  • Fish clustered within one natural group, despite experimental exposure.
  • Embedding-based analysis links lab findings to field metabolic patterns.

Abstract

Microplastic pollution is an escalating environmental concern with broad ecological and health implications. This study examines whether current levels of microplastic contamination in aquatic environments affect the metabolism of estuarine gobies (Acanthogobius flavimanus) by integrating laboratory and field metabolomics data through a data-driven, embedding-based framework. In the laboratory, gobies were exposed to polyethylene microplastics at concentrations reflecting natural environmental levels under a defined feeding regime and within a controlled environment. Metabolomic profiling of fish muscle tissue using nuclear magnetic resonance spectroscopy revealed no significant metabolic alterations relative to control specimens. To contextualize these experimental results, a large field dataset was integrated using dimensionality reduction, density-based clustering, and machine learning techniques including random forest and Bayesian network analysis. The field data were segregated into two distinct metabolic clusters. Laboratory-treated fish were predominantly grouped within one natural cluster, suggesting limited metabolic disruption under current exposure conditions. Moreover, Bayesian network analysis revealed overlapping metabolic features between laboratory and field samples, demonstrating the emerging potential of embedding-based methods for extrapolating ecological insights from controlled experiments. Collectively, these findings indicate that present-day microplastic exposure, as simulated in this study, may not elicit marked metabolic effects in estuarine gobies, while also highlighting the potential of integrative approaches to link laboratory results with natural ecosystem dynamics.

1900環境一般
ad
ad
Follow
ad
タイトルとURLをコピーしました