人工知能を活用して神経細胞の動作モデルを構築(Modeling Neurons with the Help of AI)

2025-12-08 カリフォルニア工科大学 (Caltech)

Caltech と他機関の共同研究チームは、新たな AI フレームワーク NOBLE(Neural Operator with Biologically-informed Latent Embeddings)を開発し、生物学的に現実に即したニューロン(脳細胞)の「仮想モデル」を高速かつ高精度に生成することに成功した。従来のニューロン・モデルでは、計算資源のコストやデータの入手難、多様なニューロンのばらつきへの対応が課題であった。NOBLE は連続関数を扱う「ネイティブ演算子(neural operator)」を使うことで、従来法より 数千倍高速 にモデル生成が可能となり、しかも実際の脳細胞の多様性・変動性を反映できる。さらに、必要な数だけ「無限に近い数の仮想ニューロン」を生成でき、異なる実験条件や個体差を含む多様な脳回路モデルの構築を現実的にする。この技術は、脳機能の解明、病態モデルの構築、さらには神経疾患の治療法開発などに道を拓くものであり、AIと神経科学の融合を象徴する大きな前進である。

人工知能を活用して神経細胞の動作モデルを構築(Modeling Neurons with the Help of AI)

<関連情報>

NOBLE – 生物学的情報に基づく潜在的埋め込みを備えたニューラルオペレータにより、生物学的ニューロンモデルにおける実験的変動を捉える NOBLE – Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models

Luca Ghafourpour, Valentin Duruisseaux, Bahareh Tolooshams, Philip H. Wong, Costas A. Anastassiou, Anima Anandkumar

NeurIPS  Published: 19 Sept 2025

Abstract

Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses.NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a 4200 × speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました