リンゴ園で雑草をAIが自動識別する農業ロボットの視覚技術(Eyes for an Agricultural Robot: AI System Identifies Weeds in Apple Orchards)

2025-12-04 ペンシルベニア州立大学(PennState)

ペンシルベニア州立大学の研究チームは、リンゴ園で雑草を高精度に識別する農業用ロボットAIシステムを開発した。果樹園では雑草が果樹の成長を阻害する一方、農薬の過剰散布は環境負荷を高めるため、精密な選択的除草技術が求められている。研究者らは、実際のリンゴ園で収集した多様な画像を用いて機械学習モデルを訓練し、草種・形状・光条件の変動にも頑健に作動する識別アルゴリズムを構築。システムはロボット搭載カメラで地表をリアルタイム撮影し、雑草をピクセル単位で検出、必要最小限の薬剤散布または機械的除草を可能にする。これにより農薬使用量の削減、労働力不足の緩和、生産効率向上が期待される。研究チームは、今後は他の果樹園や複雑な作物環境への適用拡大を目指すとしている。

リンゴ園で雑草をAIが自動識別する農業ロボットの視覚技術(Eyes for an Agricultural Robot: AI System Identifies Weeds in Apple Orchards)These photos show images of different weed species that the researchers trained the artificial intelligence (AI) machine vision model to recognize. That model is intended to guide an automated robotic precision herbicide spraying unit under development in the Department of Agricultural and Biological Engineering to control weeds in apple orchards.   Credit: Penn State. Creative Commons

<関連情報>

YOLOv7-CBAMとDeepSORTを用いたピクセルグリッド解析によるリンゴ園におけるリアルタイム雑草位置特定と列内密度推定 YOLOv7-CBAM and DeepSORT with pixel grid analysis for Real-Time weed localization and Intra-Row density estimation in apple orchards

Lawrence Arthur, Sadjad Mahnan, Long He, Magni Hussain, Paul Heinemann, Caio Brunharo
Computers and Electronics in Agriculture  Available online: 10 October 2025
DOI:https://doi.org/10.1016/j.compag.2025.111071

Highlights

  • YOLOv7_seg-CBAM achieves mAP@0.5 of 84.9% for weed segmentation and 83.6% for localization.
  • Horsenettle detection excels with AP of 0.96 and Recall of 0.92 in real-time orchard video analysis.
  • DeepSORT with dynamic crossline achieves MOTA of 0.82, IDF1 of 0.88 for real-time weed tracking.
  • Pixel grid-based method estimates weed density at 75%, 50%, 25% coverage thresholds.
  • Grid method optimizes weed density at a 50% threshold for precise spraying.

Abstract

In precision weed management, accurate detection, localization, and density estimation of weeds are crucial for effective decision-making. However, complex settings such as apple orchards, crop canopies, and low-hanging branches obstruct traditional top-view camera systems, requiring a side-view camera configuration that often leads to partial weed visibility and occlusion overlaps, resulting in misclassification or tracking loss of weeds. To address these challenges, this study enhances the YOLOv7 segmentation model with a Convolutional Block Attention Module (CBAM) for improved feature extraction and real-time detection of weed species. We integrated the DeepSORT algorithm, leveraging its robust tracking capabilities with a dynamic Kalman filtering cross-line mechanism to minimize detection loss from occlusions across frames. The enhanced model achieved a mean Average Precision (mAP) of 84.9% for segmentation and 83.6% for localization, while tracking performance showed a Multiple Object Tracking Accuracy (MOTA) of 0.82, Multiple Object Tracking Precision (MOTP) of 0.78, and an Identification F1-score (IDF1) of 0.88, with only six identity switches. Additionally, a novel pixel grid-based method estimates weed density at 75%, 50%, and 25% mask coverage thresholds, delivering a detailed and actionable assessment of the weed severity baseline. The effective quantification and enhanced detection and tracking capabilities of the model imply that precision weed management decisions in apple orchards can be significantly improved.

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました