量子シミュレーションで多体系現象を可視化する新手法を開発(Quantum simulation: making collective phenomena visible)

2025-11-21 ミュンヘン大学(LMU)

LMUを中心とする研究チームは、量子シミュレーション技術を用いて、物質中の集団的量子現象がどのように生じるかを“可視化”する新手法を開発した。研究では、超低温下に冷却した多数の原子を光格子に閉じ込め、量子相互作用を精密に制御しながら、スピン秩序化や量子臨界挙動などの協調的現象をリアルタイムで追跡可能にした。特に、個々の原子のふるまいがどのように大規模集団の秩序へと転換するかを観察できる点が革新的で、従来の理論モデルでは扱いにくい領域の理解を大きく前進させる。研究者らは、このシステムが量子材料、超伝導、磁性体などの“マクロな量子性”の解明に加え、次世代量子デバイス設計の基盤となる可能性を強調している。

量子シミュレーションで多体系現象を可視化する新手法を開発(Quantum simulation: making collective phenomena visible)
Cold atoms in a light trap. The researchers conducted their experiment in a setup like this. | © MQV / Jan Greune

<関連情報>

リュードベリ装いの拡張ボーズ・ハバード模型の実現 Realization of a Rydberg-dressed extended Bose-Hubbard model

Pascal Weckesser, Kritsana Srakaew, Tizian Blatz, David Wei, […] , and Johannes Zeiher
Science  Published:20 Nov 2025
DOI:https://doi.org/10.1126/science.adq7082

Editor’s summary

Ultracold atoms in optical lattices have been used extensively to simulate the behavior of the Hubbard model, which describes the physics of interacting particles on a lattice. However, past studies focused largely on on-site interactions, which are easier to implement experimentally. Weckesser et al. used the so-called Rydberg dressing technique to create extended-range interactions between rubidium atoms residing in a one-dimensional optical lattice. The researchers used a stroboscopic dressing sequence to control the losses that plagued prior implementations and studied both equilibrium and nonequilibrium behavior of the resulting extended Hubbard model. —Jelena Stajic

Abstract

The competition of different length scales in quantum many-body systems leads to phenomena such as correlated dynamics and nonlocal order. To investigate such effects in an itinerant lattice-based quantum simulator, it has been proposed to introduce tunable extended-range interactions using off-resonant optical coupling to Rydberg states, known as Rydberg dressing. In this work, we use this approach to realize an effective one-dimensional extended Bose-Hubbard model. Harnessing our quantum gas microscope, we probe the correlated out-of-equilibrium dynamics of extended-range repulsively bound pairs and “hard rods.” By contrast, operating near equilibrium, we observe density ordering when adiabatically turning on the extended-range interactions. Our results pave the way to realizing light-controlled extended-range interacting quantum many-body systems.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました