熱帯生態系における多栄養段階相互作用がリン制限を緩和することを解明(Study Reveals How Multitrophic Interactions Alleviate Phosphorus Limitation in Subtropical Ecosystems)

2025-11-21 中国科学院(CAS)

中国科学院・亜熱帯農業研究所の研究チームは、亜熱帯生態系で深刻な課題となるリン(P)制限が、多栄養段階の生物(植物-リン可溶化細菌-菌根菌-線虫)間の相互作用によってどのように緩和されるかを明らかにした。中国西南部でカルスト岩(炭酸塩岩)と非カルスト岩(砕屑岩)をまたぐ南北トランセクトを設定し、農地から森林への遷移過程を調査したところ、長期施肥は両岩質の農地で中程度難溶性および安定態Pを蓄積させ、生物的P可溶化能力を弱めていた。一方、農地を森林へ転換すると、カルスト土壌では可給態Pが43.8%増加し、中庸・安定P画分が大幅に減少した。カルスト地域は非カルスト地域より多栄養段階の多様性とP活性化能力が高く、森林回復により細菌・菌根植物・線虫の連鎖的相互作用が強まり、生物的P動員と吸収が促進、Ca/MgによるP沈殿も抑制された。研究は、カルスト生態系が耕作・森林破壊で容易に攪乱される脆弱性と、生物的P動員の重要性を強調している。

熱帯生態系における多栄養段階相互作用がリン制限を緩和することを解明(Study Reveals How Multitrophic Interactions Alleviate Phosphorus Limitation in Subtropical Ecosystems)
Conceptual diagram illustrating how multitrophic organisms adapt to P limitation under different lithological conditions. (Image by LIAO Xionghui)

<関連情報>

多栄養段階の生物多様性は亜熱帯生態系における土壌リンの流動化を促進する Multitrophic biodiversity drives soil phosphorus mobilization in subtropical ecosystems

Xionghui Liao, Jie Zhao, Tibor Magura, Wei Zhang, Fujing Pan, Peilei Hu, Dan Xiao, Jiangnan Li, Kelin Wang
Journal of Advanced Research  Available online: 7 November 2025
DOI:https://doi.org/10.1016/j.jare.2025.11.002

Highlights

  • Long-term phosphorus (P) fertilization enhances soil moderate labile and stable P storage.
  • Long-term P fertilization impairs biological P mobilization capacity.
  • Cropland conversion into forest accelerates soil labile and stable P mobilization.
  • Efficient biological P uptake and mineral chelation result in low available P in forest soils.

Abstract

Introduction

The phosphorus (P) mobilization capacity of plants and microbes is hierarchically constrained by climatic drivers, land-use types, lithological properties, and consumer-mediated trophic cascades.

Objectives and methods

We established a latitudinal transect across contrasting lithologies (carbonate vs. siliciclastic sedimentary rocks) in subtropical southwest China to investigate how multitrophic biodiversity and trophic interactions affect soil P mobilization during cropland-to-forest succession.

Results

Cropland conversion into forest significantly increased soil labile P fractions by 43.8% in karst regions, but decreased soil moderately labile and stable P fractions by 62.6–79.1% and 34.8–36.6%, respectively, in both karst and non-karst regions. Multitrophic biodiversity and P mobilization capacity were significantly greater in karst than non-karst regions. Climate warming amplified trophic cascading effects on soil P mobilization capacity mediated by phoD-harboring bacteria in forests via increasing alkaline phosphatase activity. Karst forests developed efficient P mobilization-uptake coordination to overcome calcium/magnesium-induced P chelation constraints through tightly coupled multitrophic interactions. The multitrophic network relationships are conducive to plant P uptake, but vulnerable to species losses caused by anthropogenic disturbances (e.g., tillage and deforestation) in karst ecosystems.

Conclusion

Our findings provide a framework linking lithology-mediated P mobilization with trophic interactions to alleviate P limitation in subtropical ecosystems under global change.

1206農村環境
ad
ad
Follow
ad
タイトルとURLをコピーしました